

 II

The Quake III Arena Bot

by J.M.P. van Waveren

June 28th 2001

Revision 1

University of Technology Delft
Faculty ITS

 III

The Quake III Arena bot is an artificial player for the computer game Quake III Arena.
This document is copyright 2001 by J.M.P. van Waveren, all rights reserved.

Quake III Arena™ , the QIIIA™ logo, the id™ logo and the id Software™ name are
trademarks of id Software, Inc., Mesquite, Texas.

All other trademarks are properties of their respective owners.

c

 IV

Abstract

Games play an important role in the field of artificial intelligence (AI). They offer an
environment to test ideas about human reasoning, problem solving and other human
abilities. The ultimate goal of AI is to create an artificial man. Games offer the
opportunity to create artificial players which are modeled after human beings. Playing
the game, human beings can interact with these artificial creatures and experience how
well these creatures show human-like behaviour.

Quake III Arena is a computer game that belongs to the genre of first person shoot-em
up games. The player views from a first person perspective and moves around in a real-
time 3D virtual world. The most important tasks are staying alive and eliminating
opponents within this virtual world. These opponents are other people, equal in strength
and abilities, connected to the same game through a network or the Internet. The game
has a set of different virtual environments called levels or maps, that contain rooms and
hallways. The players have a whole range of weapons, items and powerups available to
aid in the battles that take place in these maps. Quake III Arena offers various ways to
play the game including team based gameplay modes.

This thesis presents the Quake III Arena bot which is an intelligent artificial player
emulating a human player in the game environment. This artificial player is often called a
bot as an abbreviation for the word robot. With this bot everyone can enjoy the game
and practice, without the need for a network connection to other people. The bot is an
artificial player that only ‘lives’ inside the computer, side by side with the game. The bot
receives information about the game environment directly from the game program as a
set of variables. The game input from the bot is also sent directly to the game program.
Although the bot only ‘lives’ inside the computer, the ingame behaviour of the bot has to
be hard to distinguish from the behaviour of human players. To make the game more
enjoyable and more versatile, a range of different bot characters is used that each play
the game in their own style, and provide different challenges for the human player.

To show human-like behaviour a wide range of techniques and common sense solutions
are used for the bot AI. The Quake III Arena bot is the first commercially developed
artificial player that uses fully automated path and route finding through arbitrary
complex 3D polygonal worlds, without the need for the bot to acquire knowledge about
routing and navigation during gameplay. No human intervention is required to provide
the bot with all the information needed to navigate through, and understand new game
environments. The bot uses a volume (area) based representation of the 3D game
environment, which serves as a back-bone for the bot’s cognitive world model. Together
with a high performance path finding solution this cognitive model makes the bot rather
resource efficient.

Key words and phrases: Quake III Arena bot, Quake3 bot, artificial player, artificial
intelligence, automated route finding through polygonal worlds, navigation through
polygonal worlds, hierarchical routing.

 V

Acknowledgements

First of all, my thanks to id Software for making some of the best and most addictive
games, and giving me the freedom to make the Quake III Arena bot reality as I deemed
best.

Thanks to my supervisor and mentor at the University of Technology in Delft the
Netherlands, drs. dr. L.J.M. Rothkrantz, for support, encouragement and inspiration.

It has always been a pleasure working with Miklos de Rijk. My thanks and appreciation
to him for lots of input, feedback and bringing previously developed bots ‘alive’ with
characters and ideas.

I would like to thank Alan [Strider] Kivlin for being a great sounding board and source of
inspiration.

Special thanks to some of the best students at the university, Ronald Kroon, Edward van
Bilderbeek and Karin de Boer. Both as friends and colleagues they have made life at the
university a lot more enjoyable. Also my appreciation to them for keeping up with my
mindless chatter.

Thanks to William van der Sterren for inspiration with his work on Computer Generated
Forces (CGF) and for his many suggestions to this thesis.

Last but not least I am greatful to my family and friends for their love and
encouragement.

J.M.P. van Waveren
June 28th 2001

 VI

Contents

1. Introduction .. 1

1.1 Quake III Arena ... 1
1.2 Artificial player ... 1
1.3 Cognitive model... 2
1.4 Domain knowledge .. 3
1.5 Knowledge acquisition ... 4
1.6 Bot behaviour .. 4
1.7 Perfect simulation vs. enjoyable opponent ... 5
1.8 Generic vs. map specific knowledge .. 6
1.9 Overview ... 7

2. Requirements ... 8

3. Background .. 9

3.1 Robots... 9
3.2 Path finding...10
3.3 Finite state machine..11
3.4 Fuzzy logic ...12
3.5 Neural networks..13
3.6 Expert systems ...14
3.7 Genetic algorithms..15

4. Related work... 16

4.1 FPS games & AI ...16
4.2 Previous work ...18
4.2.1 Omicron bot ...19
4.2.2 Gladiator bot ..20

5. Bot Architecture ... 21

5.1 Layered architecture ...21
5.2 Information flow ..22
5.3 Structure of game engine..23

6. Area Awareness System ... 24

6.1 AAS..24
6.2 Creating areas..25
6.3 Environment sampling ..32
6.4 Reachability ..34
6.5 Routing...40
6.6 Entities..46

7. Basic Actions ... 47

7.1 Human and Bot Input Interface ...47
7.2 Actions..47

 VII

8. Bot Characters ... 49

8.1 Characters..49
8.2 Characteristics..50

9. Bot Decisions & Preferences.. 52

9.1 Fuzzy Logic ..52
9.2 Representation ...52
9.3 Preferences ..54
9.4 Genetic Selection..56

10. Bot Chats .. 57

10.1 Communication with text...57
10.2 Interpreting text sentences..57
10.3 Initiating chats and Eliza chats..59
10.4 Chat reasoning ...63

11. Bot Goals .. 65

11.1 Ingame goals ..65
11.2 Short term goals ...65
11.3 Long term goals..66

12. Bot Navigation.. 67

12.1 Moving towards a goal ..67
12.2 Moving in a direction...68

13. Bot Fighting .. 69

13.1 Acquiring an enemy ..69
13.2 Using weapons ...69
13.3 Movement...71

14. Obstacles and puzzles .. 72

14.1 Obstacles ...72
14.2 Solving Puzzles ..72

15. AI network... 75

15.1 The network..75
15.2 The nodes...76

16. Bot Commands... 80

16.1 Interpreting chat messages...80
16.2 Commands ...81
16.3 Questions ...84

 VIII

17. Team AI ... 85

17.1 Individual team AI ...85
17.2 Team leader ...85

18. Implementation & tests ... 87

18.1 Implementation ...87
18.2 Bot characters ..87
18.3 AAS & Maps ...88
18.4 AAS visualisation ..89

19. Conclusion.. 90

19.1 Bots ..90
19.2 AAS..91
19.3 Future directions...91

20. References.. 93

20.1 Books and articles ..93
20.2 Websites...94
20.3 Previous work ...95

A. Quake III Arena .. 97

A.1 Getting about..97
A.3 Environmental hazards...98
A.4 Structural systems..99
A.5 Weapons..100
A.6 Items & Powerups ..103
A.7 Deathmatch..105
A.8 Teamplay ...105
A.9 Capture the Flag...105

B. Bots... 106

C. Terms and abbreviations.. 108

 IX

List of figures

1.1 View in Quake III Arena.
1.2 Cognitive model.
1.3 Turing test.
3.1 Maze with waypoints represented by dots.
3.2 FSM for a light switch.
3.3 Simple FSM for a bot.
3.4 Example of a neural network.
4.1 Wolfenstein 3D, 1993 by id Software
4.2 Doom, 1994 by id Software
4.3 Duke Nukem 3D, 1995 by 3D Realms
4.4 Quake, 1996 by id Software
4.5 Quake II, 1997 by id Software
4.6 Unreal, 1998 by Epic
4.7 Half-Life, 1999 by Valve Software
4.8 Unreal Tournament, 1999 by Epic
4.9 Omicron bot.
4.10 Quake map with waypoints
4.11 Gladiator bots.
5.1 Layered architecture.
5.2 Information flow through layers.
5.3 Integration of bot AI with the game engine.
6.1 Bounding box on cube shaped brush.
6.2 Expanded cube shaped brush.
6.3 Mins and maxs vector in a bounding box.
6.4 2d view of a bounding box colliding with a brush.
6.5 Bounding box on wedge.
6.6 Expanded wedge.
6.7 Beveled wedge.
6.8 BSP tree of four brushes.
6.9 Three brushes.
6.10 Three expanded brushes with overlap.
6.11 Two adjacent brushes.
6.12 Area with gap.
6.13 Area subdivided around a gap.
6.14 Trace subdivided by a BSP tree.
6.15 Step.
6.16 Step with low water.
6.17 Low water onto step.
6.18 Barrier.
6.19 Barrier with low water.
6.20 Step down.
6.21 Ledge.
6.22 Ledge with water.
6.23 Ledge with obstacle.
6.24 Water jump.
6.25 Water jump with low water onto floor.
6.26 Jump reachability.
6.27 Clusters separated by portals.
6.28 Entities linked into areas.
9.1 Teleporter item.
9.2 Lightning gun.
9.3 Lightning gun fuzzy weight.
11.1 Two items which can be goals.
11.2 A bot camping.

 X

11.3 A flag in a CTF game.
12.1 Route through areas (only area ground faces are shown).
13.1 Enemy in fog.
13.2 Shooting projectiles at both sides of a pillar.
14.1 Top down view of a puzzle.
15.1 AI network.
15.2 C code for “Battle Fight” AI node.
17.1 Four states of a CTF game.
18.1 Area underneath arch.
18.2 Jump reachability.
18.3 Jump pad reachability.

1. Introduction Quake III Arena Bot 1

1. Introduction

1.1 Quake III Arena

Quake III Arena belongs to the genre of the first person shoot-em up games. A player
views from a first person perspective and moves around in a real-time 3D virtual world.
The most important tasks are staying alive and eliminating opponents within this virtual
world. These opponents are other people, equal in strength and abilities, connected to
the same game through a network or the Internet. The players have a whole range of
weapons, items and power-ups available to aid in the battles. The game has a set of
different virtual environments called levels or maps, that contain rooms and hallways.
The battles in the game take place within these maps much like gladiators fight in an
arena. Players can score points by taking out other players. When killed, a player
respawns at one of the designated locations on the map and can continue to fight.
Quake III Arena also has several team oriented gameplay modes. In normal teamplay
there are two teams with players that fight each other. The team with the highest
accumulated score, of all players on that team, wins. There is also a Capture The Flag
(CTF) team based game mode. Again there are two teams with players. Each team has
a base structure in the game world or map. A flag is positioned in such a base. A team
scores points by capturing the flag of the opposing team and bringing it back to their own
flag in their own base. More detailed information about the game can be found in
appendix A. However playing Quake III Arena is probably the best way to acquire a
better understanding of a lot of concepts in the game.

1.2 Artificial player

The Quake III Arena bot is supposed to act like a human player in the virtual world of the
game. The bot replaces the need for other people to connect to the game. Just like a
player can play the game with multiple other people the game can be played with one or
more bots. To make the game more enjoyable and more versatile, a range of different
bot characters is used that each play the game in their own style, and provide different
challenges for the human player. In order to act like a human player the bot does not
only need to understand the rules of the game and how the game works. The bot also
needs basic abilities like navigating through the game environments, picking up items
and handling weapons. Quake III Arena includes team based game modes like regular
teamplay and Capture The Flag (CTF). The bot has to be able to play these game types
and has to operate in teams. In order to operate in a team, with both human players and
other bots, the bot needs to communicate with other players.
The bot lives inside the computer next to the game program and only appears as a
human player in the game. The same (game) rules that apply to human players in the
game, also apply to the bot. The bot does however not use the same input and output
devices as human players. Instead of the output devices human players use, like the
computer’s monitor and sound card, the bot receives information about the virtual world
directly from the game program as a set of variables. The bot also does not use the
commonly used input devices like the keyboard and mouse. The bot sends a sequence
of actions or intentions directly to the game program. These actions however, are very
similar to the actions a human player can input using the computer’s input devices. The

1. Introduction Quake III Arena Bot 2

bot uses knowledge that has been provided in advance and knowledge acquired during
gameplay to construct such sequences of actions.

1.3 Cognitive model

People often use different representations to deal with or remember different aspects of
the environment they live in. Some people have a better visual memory. To remember
things more easily they can try to visualize things that do not have a visual
representation by default. Such different representations for different purposes are used
a lot throughout life. In the same way the bot needs its own cognitive model of the virtual
world it lives in. This internal model plays an important role in how the bot perceives and
understands the virtual world. In particular, the bot cannot notice aspects of the world
that are not represented within its cognitive model.

Figure 1.1: View in Quake III Arena. Figure 1.2: Cognitive model.

Usually the cognitive model used by a bot is a simplified version of the virtual world. If
the bot were to live in the real world it would simply not be feasible to create a perfect
model, because the real world is too complicated. Some of the models, available to
model the real world, are quite sophisticated and accurate, but there are too many
variables in play which, makes it infeasible to model the real world perfectly. Since the
virtual world resides somewhere inside the computer, just like the bot itself, it is up to
some degree possible for the bot to have a perfect model of this world. There can still be
factors from outside the virtual world, for instance entities beyond the game program’s
control like human players, but most of the virtual world works according to explicit rules
which can be modeled perfectly. However, a perfect model of the virtual world is usually
not desired for several reasons. It would be rather computationally time consuming to
use a model that simulates every single aspect of the virtual world. The required
computation time grows very fast when the bot wants to evaluate a number of alternative
courses of actions, and their influence on how the virtual world advances. Using a
perfect model can also result in unrealistic behaviour of the bot. A bot would be able to
look into the future and precisely predict what is going to happen. The bot would also be
omniscient and could easily manipulate other entities in the world, and in effect set the
world to its hand. However it is not desirable for the bot to have such an ability, not
common to human beings. Aside from these problems, the representation used for
simulating the virtual world is usually not suitable as a cognitive model for the bot. A
different model is required, which allows the bot to perceive and understand aspects of
the virtual world more easily.

stairs

stairs

stairs

Team mate

1. Introduction Quake III Arena Bot 3

For Quake III Arena the bot needs a cognitive model which allows the bot to represent
the things required for autonomous behaviour within the virtual world. In it’s simplest
form this internal model can be a set of variables that represent the current state of the
world. This state of the world includes the position of the bot, position of enemies and
items, the weapons the bot has gathered etc. To be able to navigate through the virtual
world and find certain locations in the virtual world the bot also needs a representation of
the level or map the bot is situated in. Not all aspects of the 3D environment need to be
included in such a representation. The bot will most likely care less about the textures
and colors on the walls of the rooms the bot navigates through. Of course such colors
might make opponents harder to spot, depending on their outfit, or perhaps have an
influence on the mood of a player. However such influences are often not found to be
significant enough to be taken into account.

1.4 Domain knowledge

For autonomous behaviour the bot also needs to maintain an explicit representation of
how the virtual world changes. This knowledge is referred to as domain knowledge, and
is required to reason about the effects of different sequences of actions. The reasoning
is necessary for the bot in order to select actions, that are useful within the game and
allow the bot to achieve certain goals. Human players often think intuitively about the
effects of actions and make a lot of implicit common sense assumptions. A bot does of
course not have this common sense by default. A certain level of domain knowledge and
common sense will have to be built into the bot.
The Quake III Arena bot needs at least a basic level of domain knowledge in order to
operate in the game. The bot needs to know about certain aspects of the virtual world
that advance continuously as time passes. For instance when items are picked up by a
player they will respawn within a certain amount of time. No effort from the bot is
required for items to respawn, this happens automatically. Also some platforms in the
environment continuously move up and down or back and forth. When the bot knows
about the things that continuously advance or change, the bot can predict when certain
items reappear, and the bot will know how long to wait before it can hop onto a platform
in order to ride it.
A lot of things in the environment only change due to actions from players. Usually such
actions only have an effect on other players, and little or no effect on the geometry of the
environment. For instance when a player fires a weapon, another player might be hit and
get damaged, which results in a loss of health for that player. However the walls, floors
and ceilings of rooms in the environment show no or little change due to the impact of
projectiles fired. Usually an impact marker is displayed where projectiles hit the wall, but
the geometric representation of such a wall does not change. This means the bot cannot
create shortcuts to other rooms by blowing up a wall. Sometimes actions do have an
effect on the geometry in the environment. Some doors and bars are opened by pushing
a button. In some cases the player has to walk up to such a button and press it, in other
cases the player needs to shoot at a button in order to activate it.
How other players are likely to behave in reaction to certain events in the game world is
also part of the domain knowledge. A player can perform certain actions in an attempt to
influence other players. The player could walk into the direction of a certain item in order
to make another player believe he is going for that item, but instead set a trap by waiting
just around a corner. This kind of strategic domain knowledge is usually much harder to
represent.

1. Introduction Quake III Arena Bot 4

1.5 Knowledge acquisition

The bot does not only need basic knowledge in advance to be able to operate in the
virtual world, the bot also has to acquire knowledge while playing the game. The current
state of the world is one of the simplest kinds of knowledge the bot can acquire. This
knowledge acquisition is referred to as sensing. Human players acquire knowledge
about the current state of the world through the output devices of the computer. The
player can look at the 3D image projected on the monitor and listen to sounds generated
by the computer’s sound card. To acquire more, or specific knowledge the player might
need to look around or walk to a certain location for a better view or better acoustics.
The bot however, does not necessarily need to perform special actions within the virtual
world to acquire knowledge about the state of that world. The bot does also not use the
same output devices used by human players. The bot receives information about the
state of the world as a set of variables directly from the game program. Within the game
program all the information about the current state of the virtual world is readily
available. As a matter of fact there is more information available to the bot than a human
player is able to acquire. The bot could peek at any information within the world since
this virtual world resides inside the computer next to the bot. However it is usually not
desirable for the bot to directly acquire information which is not available to a human
player. For instance the bot should not be able to always know where it’s opponents are
within the virtual world. The bot is supposed to be a fair player and the ability to directly
acquire more knowledge than a human player would be considered cheating. The bot
may however predict where opponents are, based on knowledge that is available to any
player. Of course the bot will also know the positions of opponents when they are visible
to the bot. This however, requires a definition of what is visible to the bot and what is not.
Based on a player’s view direction only a limited portion of the surroundings are visible
at any time. Certain aspects of the virtual world, for instance fog, can also blur the view
or reduce the visibility of parts of the world. Such factors should also be taken into
account when the bot acquires knowledge. The bot should not only be limited in the
access to certain information in the virtual world, the bot should sometimes also acquire
knowledge with a certain inaccuracy. When for instance several sounds are playing at
the same time it can be hard to distinguish the different sounds. This can lead to an
inaccuracy in the sounds the bot might recognize.
Aside from knowledge about the current state of the world the bot can also acquire
knowledge about the dynamics of the world, the domain knowledge. The bot could
acquire knowledge about how the world behaves and how other entities like other
players within the world behave. This kind of knowledge acquisition is called learning
and is far more complex than sensing. Often learning requires the recognition of patterns
in a large amount of observations and evaluations of the effects of certain sequences of
actions. Usually most, if not all domain knowledge a bot uses is provided in advance.

1.6 Bot behaviour

Just like a human player the bot has to be autonomous: the bot needs to decide how to
behave on it’s own. To be autonomous a computational model of the bot’s behaviour is
required. The bot’s behaviour is defined by the sequence of actions it executes. Such
sequences of actions could all be predefined. The bot would then always act the same
and not adjust to different situation. The bots behaviour would be determined in
advance. Predefined behaviour makes the bot rather predictable and will not make a
very interesting opponent. Human players are often very unpredictable and a bot should
have this same characteristic. Randomly choosing sequences of actions will make the

1. Introduction Quake III Arena Bot 5

bot rather unpredictable, but this random behaviour is not particularly useful within the
game. The bot has to choose its behaviour based on what it wants to achieve in the
game. The domain knowledge and knowledge about the state of the world can be used
to reason about and choose sequences of actions. The bot will want to choose only
those sequences of actions that will lead to achieving the goals the bot sets out for. The
bot has to choose these goals first and sometimes use several sub-goals in order to
break down a complex task into several simpler tasks. In the teamplay game types the
bot’s goals might also be determined by a team leader who communicates certain tasks
to the bot. During the course of the game the bot has to continuously evaluate if it comes
closer to the goals it tries to achieve. The bot will have to adjust to changes in the game
environment in order to achieve the goals.

1.7 Perfect simulation vs. enjoyable opponent

When creating an artificial player for a game, a natural approach is simulating a human
player and how a human player thinks. One would try to simulate the human player into
perfection. In order to simulate a human player the artificial player will need a certain
degree of intelligence. As of now no-one has shown to be able to understand every
aspect of human intelligence, let alone perfectly simulate a human being. However one
can try to get as close as possible. This might seem feasible because within a game not
all aspects of human intelligence have to be simulated, simply because not all aspects
are applicable to the game. However a question arises. Is it really desirable to simulate a
human player into perfection? And should an artificial player simulate exactly how a
human player thinks and operates?
Another approach might also be plausible. One could try to create an artificial player that
is not (easily) identified as being artificial and most of all is fun to play with. If an artificial
player should not be easily identified as being artificial it still needs a certain degree of
intelligence.

Alan M. Turing (1912-1954) came up with a test to identify machine intelligence. In 1950
he wrote an article about this test in “Mind, a quarterly review of psychology and
philosophy” titled “Computing machinery and intelligence”. In this test there are two
people and the machine to be tested. One person and the machine are respondents,
and the other person is an interrogator. The interrogator and respondents are all in
different rooms. The interrogator can only ask questions via a keyboard or terminal. Both
respondents attempt to convince the interrogator that they are the human respondent.
The machine passes the test if the interrogator cannot tell the difference between the
respondents, or guesses at chance at the identity of the respondents. If the interrogator
can tell the difference the machine fails the test. Turing thought that any machine which
passes the test should be considered intelligent or able to think. In other words, Turing

Human

machine

answer

answer

interrogator

question

Human or machine ?

Figure 1.3: Turing test.

1. Introduction Quake III Arena Bot 6

proposed the test as a sufficient criterion for machine intelligence. He felt it was not a
necessary condition, because of the possibility that some intelligent creatures might not
be able to correctly participate in the test for some physical reason. However, as Block
(1995) shows it is possible to satisfy the Turing test with an unintelligent, physically
possible machine. This means that the test does not seem to be a sufficient criterion
either. If the test is neither necessary nor sufficient, perhaps it can be considered a mark
of intelligence, rather than criterion for intelligence. The Turing test does provide the idea
that for a machine to be considered intelligent, it is not required to operate in exactly the
same way as existing intelligence. It is far more important that the machine appears
intelligent and cannot be identified as being artificial.
Creating an artificial player that is not (easily) identified as being artificial and that is fun
to play with seems a better approach, especially since the game Quake III Arena is
meant to be fun and entertaining and the bots are part of the game. It is more important
for people to have the illusion the bot is human and not artificial. However, one should
also keep in mind that trying to more or less exactly simulate human intelligence and
how humans think, is in some cases the best path to follow. In such cases it is the best
way to make sure the artificial player is not identified as being artificial.

1.8 Generic vs. map specific knowledge

Even though the game play rules for Quake III Arena and the game itself seem not all
that complex at first sight, there is a vast range of different and more or less complex
strategies that can be applied. With the team based game modes included even more
strategies can be thought of. A lot of strategy guides have been written for first person
shoot-em up games. It is interesting to see that often only a small portion of such a guide
discusses general strategies. The larger parts of a guide usually deal with level or map
specific strategies. Usually the best strategies are listed per map. This is not without
reason. Perhaps general strategies are harder to describe but they are always executed
in different ways for each map or game environment. Since players usually play in a
limited number of different maps, strategies can be described per map in these strategy
guides.
Of course providing the bot with a certain degree of strategic knowledge is desirable.
The above might lead to believe this knowledge needs to be implemented specific to a
map or environment. To some degree the bot will need knowledge specific to a map.
The bot will have to know it’s way around in the 3D environments of the game. As will be
shown, this type of knowledge can be deduced from the maps. The question is if
strategic knowledge can also be deduced from the game environments by a bot. Human
beings seem capable of doing this as they develop the map specific strategies. Is it also
desirable to create a bot, which is capable of doing this? A lot of information can be
deduced from the environment, like strategic positions, tactics [9] and perhaps even new
strategies. One could also try to match a fixed set of strategies to a certain environment
and try to find out which strategies are applicable. As to date this area of artificial
intelligence in FPS games remains largely unexplored.
Providing the bot with all the strategic knowledge for each map by hand does not seem
feasible. During the development of an FPS game the maps tend to change a lot.
Designing and implementing a good map involves a lot of work. Implementing map
specific strategies requires a lot of additional work and expertise. When the maps, and
as a result the strategies change frequently, this is too time consuming and requires
people with the right expertise.
However an approach somewhere in middle could be pursued. One could try to deduce
as much information from the environment as possible. On top of this, scripting could be

1. Introduction Quake III Arena Bot 7

used to aid the bot in certain situations. Such a script provides the bot with a specific
plan, or tells the bot how to perform a specific task in its current environment. If a script
resides at a relatively abstract level without referencing too much detailed information
about a specific environment, then the script is also less sensitive to changes in a map.

1.9 Overview

The requirements for the Quake III Arena bot are outlined in section 2. Creating a bot for
an FPS game is an extensive task which requires expertise from many different areas
within the field of artificial intelligence. Some of the more commonly used methods and
techniques will be loosely described in section 3. Relevant prior work related to both
FPS games and the artificial intelligence in these games is reviewed in section 4.
Section 5 describes how the Quake III Arena bot is structured. Section 6 through 17
describe the sub-systems that are used for the AI of the bot. The order of these sections
is based on how the bot is built from the ground up. Section 18 provides some details on
the implementation of the bot, and shows the results of some tests of the subsystems
used by the bot. Section 19 concludes with the findings that surfaced during the
development of the Quake III Arena bot. This section also provides some future
directions for improvement and the development of new bots.

2. Requirements Quake III Arena Bot 8

2. Requirements

The Quake III Arena bot has to act like a human player in the virtual world of the game.
As such, the bot should be hard to distinguish from a human player. In particular the bot
has to be visualized in the environment just like human players. The bot also has to
navigate through the environment in a life-like manner, pick up items and handle
weapons just like human players do. The bot has to be entertaining and suitable for
practice and training purposes. To make the game more enjoyable and more versatile,
there has to be a range of different bot characters that each play the game in their own
style, and provide different challenges for the human player. The bot has to be a fair
opponent and should in no event cheat. The communication with a bot should also be
hard to distinguish from communication with human players. The bot has to be able to
chat with other players. The bot also needs to communicate with team mates in the team
based game modes like CTF. Life-like interaction with team mates is required to operate
in a team with both human players and other bots.

The bot also has to meet a number of requirements on a technical level. The bot has to
be resource efficient, both CPU and memory usage have to be low. Since the bot AI
code is running concurrently with the game engine, the bot code may typically not
consume more than 10 to 15% of the available CPU time. This is rather limiting
especially since multiple bots will often play the game at the same time. The CPU usage
should also be as constant as possible over time. Spikes in the CPU usage will cause
interruptions in the game simulation, which are rather annoying for human players, and
take away some of the gameplay experience. All the bots that exist in the game at the
same time may not consume more than a few mega bytes (MB) of memory together.
Any cognitive models and other kinds of knowledge, provided in advance or acquired
during gameplay, have to fit in the limited amount of available memory.

The bot AI code has to be of commercial quality. Special attention has to be paid to the
implementation and coding style. Both the architecture and code have to be robust and
extendible. The code also has to be portable across various platforms because the
game Quake III Arena ships for multiple different PC architectures and game consoles.
The Quake series of games are well known for their open structure, which allows third
party developers to extend upon and modify the game. Third party developers have to
be able to easily modify and customize the bot AI code to make the bots work with new
game variants and modifications. Professional and amateur level designers can also
create new game environments or maps for the game. The bot has to be able to
understand and navigate through these new maps or environments without the need for
complicated instruction from the level designers.

3. Background Quake III Arena Bot 9

3. Background

Creating a bot touches many different areas within the field of Artificial Intelligence (AI),
and also areas not directly associated with AI. This section by no means provides a
complete and detailed description of the different algorithms and techniques used for the
AI of a bot. However some of the commonly used methods and techniques are
described.

3.1 Robots

An artificial player in an FPS game is often called a bot as an abbreviation for the word
robot. The word 'robot' was coined by the Czech playwright Karel Capek from the Czech
word for forced labor or serf. The use of the word Robot was introduced into his play
R.U.R. (Rossum's Universal Robots) which opened in Prague in January 1921. The play
was an enormous success and productions soon opened throughout Europe and the
US. In part R.U.R's theme was the dehumanization of man in a technological civilization.
The term 'robotics' refers to the study and use of robots. The term was coined and first
used by the Russian-born American scientist and writer Isaac Asimov (1920 - 1992). The
word 'robotics' was first used in “Runaround”, a short story published in 1942. “I, Robot”,
a collection of several of these stories, was published in 1950. Asimov also proposed his
three "Laws of Robotics", and he later added a 'zeroth law'. 0: A robot may not injure
humanity, or, through inaction, allow humanity to come to harm. 1: A robot may not
injure a human being, or, through inaction, allow a human being to come to harm, unless
this would violate a higher order law. 2: A robot must obey orders given it by human
beings, except where such orders would conflict with a higher order law. 3: A robot must
protect its own existence as long as such protection does not conflict with a higher order
law.
According to these laws robots serve humanity in that they can perform certain tasks,
and thereby take away the need for humans to perform these tasks. Bots in FPS games
serve the purpose of entertainment and practice, and certainly do not always obey
orders from human beings. However creating bots for an FPS game is closely related to
robotics, especially the area of robotics that deals with life-like robots. Many of the same
problems that arise in the field of robotics also surface when creating an artificial player
for an FPS game. Both for robots and bots cognitive models play an important role in
how the world they live in is perceived and understood. This world is usually the real
world for a robot where a bot for an FPS games lives in a virtual world. However a lot of
representations used to represent things in the real world can also be used to represent
things in the virtual world. Both robots and bots in FPS games use sensing to acquire
knowledge about the state of the world. Usually this sensing is far more complex for
robots in the real world. Here sensing might involve recording images with a camera and
recognition of patterns in such images. For bots in an FPS game retrieving the current
state of the world is much easier. However the methods used for robot sensing often
provide useful information on how to make a bot in an FPS game more life-like. Robots
and bots can also both learn how the world advances under certain conditions or as a
result of executed actions. The methods for acquiring and storing this kind of knowledge
can be quite similar. Also navigating through the environment they live in is a complex
problem for both bots and robots.

3. Background Quake III Arena Bot 10

3.2 Path finding

One of the requirements for autonomous behaviour in FPS games is the ability to
navigate around the game world in a life-like manner. Determining how to navigate
through a map is an interesting problem. Many different approaches to solving this
problem have been presented. Very simple AI just lets a bot walk forward until
something is hit. At that point the bot turns and continues walking forward. There are
also more complex path finding algorithms that use heuristics to find routes through the
environment. A special representation of the environment or map is often used for these
more complex algorithms. One of the most commonly used representations is a
waypoint system. Such a waypoint system is a collection of points or locations
(waypoints) with directional links between them. The waypoints represent the places
where the bot can go and the links between them represent the paths the bot can follow
in order to easily travel from one waypoint to another. Usually the links represent straight
line directional paths. Creating an efficient waypoint system for a specific environment is
an interesting and often complex task. A bot could create the waypoint system during
gameplay and drop waypoints as it wanders through the environment. The bot will have
a hard time reaching most places in the environment until it has wandered through most
of the game world. Using this method the bot often never finds out how to go to certain
hard to reach places. The waypoint system could also be created in advance before the
bot enters the game. Placing waypoints throughout the environment and linking them is
often a time consuming task to be completed by the level designer. Some algorithms
have been developed to aid in creating a waypoint system in advance, but usually
human intervention is required to optimize the system.

When a good waypoint system is available to the bot, a whole range of different paths
can be calculated. Usually only the shortest paths towards specific goals are used by a
bot. However different kinds of paths can be useful as well. For instance paths that lead
towards a goal, while avoiding certain areas of the world at the same time. Several
algorithms are available to calculate the shortest path between a source location and a
destination. The most commonly used algorithms are Floyd’s, Dijkstra’s and A* (A - star)
[11]. These algorithms were designed in the context of graphs and graph theory. Since a
waypoint system is very similar to a directed graph these algorithms can also be used to
calculate paths along one or more waypoints. Traveling along a path, the bot might still
encounter small or larger obstacles. A bot often uses sensing and environment sampling
to identify the nature of such obstacles. The bot then tries to avoid or navigate around
the obstacles. The Quake III Arena bot does not use waypoints to find routes and
navigate through the environment. The path finding and navigation used by the Quake III
Arena bot is described in section 6 and section 12.

Figure 3.1: Maze with waypoints represented by dots.

3. Background Quake III Arena Bot 11

3.3 Finite state machine

A finite state machine (FSM) is a system that has a limited number of states of
operation. A real world example could be a light switch which is either on or off. The
finite state machine that represents a light switch has an ‘on state’ and an ‘off state’.

In the light switch example there are only two states and from either state the light switch
can change to the other state. Usually there are more than just two states and the state
transitions are often limited. The subject being modeled usually cannot directly change
from any state to every other state. The state transitions are also bound by certain
conditions. The light switch for instance only changes state when a person pushes the
switch in a certain direction.
Any system that has a limited number of possible states can be modeled as a finite state
machine. Finite state machines are often used to simulate human beings, how they
behave and think. Although there are other systems that can more accurately model the
way humans think and learn, the simplicity of finite state machines makes them rather
popular. The finite state machine only needs to be as complex as the desired complexity
of the subject being modeled.

Finite state machines are often used to model the line of thinking for a bot. The different
states of the finite state machine can represent different states of mind, or different kinds
of behaviour. There can be states for different situations and state transitions are often
based on certain events in the game environment. A very simple bot could be modeled
with a finite state machine using four states as shown in figure 3.3. The Quake III Arena
bot uses a similar structure as the FSM to model its think process. This structure is
described in section 15.

on off

Figure 3.2: FSM for a light switch

attack chase
enemy

gather
items

retreat

Figure 3.3: Simple FSM for a bot

3. Background Quake III Arena Bot 12

3.4 Fuzzy logic

Fuzzy logic [2] is a superset of conventional (Boolean) logic. This logic was extended to
handle the concept of partial truth, also using values between "completely true" and
"completely false". Dr. Lotfi Zadeh of UC/Berkeley introduced fuzzy logic in the 1960's as
a means to model the uncertainty of natural language.

Fuzzy Subsets

Just as there is a strong relationship between Boolean logic and the concept of a subset,
there is a similar strong relationship between fuzzy logic and fuzzy subset theory. Let's
assume there's a set S and to all its elements there's one element of the set {0,1}
attached. The subset U of the set S is defined as all the elements of S that have a '1'
attached. The truth or falsity of the statement "x is in U" can be determined. The
statement is true if there's a '1' attached to the element 'x' in S. Otherwise the statement
is false.
Similarly for the fuzzy case there's a set S. But now a value from the interval [0, 1] is
attached to every element of S. The subset U of the set S isn't strictly defined in this
case. However it can be determined how much an element from the set S belongs to the
fuzzy subset U. A value of zero attached to an element from S represents complete non-
membership of U. A value of one represents complete membership. The values between
zero and one represent intermediate degrees of membership. The degree to which the
statement "x is in U" is true can also be determined. The degree of truth of the statement
is given by the attached value to the element x in the set S.

Fuzzy functions and relations

Often a value from the interval [0, 1] is attached to an element of the set S using a
function, the membership function. Such a function is one-dimensional because it's
based solely on one criterion. In practice membership functions are based on two or
even more criteria. Such a function gives a value from the interval [0, 1] to a combination
of criteria and is often referred to as a "fuzzy relation". The criteria don't have to be
elements from the same set. They can just as well be elements from different sets. The
criteria also do not have to be elements from sets. Variables of some kind can also be
used as criteria.

Fuzzy logic and bots

Fuzzy logic can be used by bots to express how much they want to have, or do certain
things. For instance a bot might think of how much it wants to retrieve a certain item as a
fuzzy value. The more the bot wants the item the higher the fuzzy value. Fuzzy relations
can be used to express the relation between the current state of the bot and how much
the bot wants something. For instance based on which weapon the bot is holding, and
how much ammunition the bot already has for the weapon, the bot can attach a fuzzy
value to how much it wants to retrieve more ammunition for the weapon. The Quake III
Arena bot uses this kind of fuzzy logic to express how much it wants to have or do
certain things. How the bot represents and uses the fuzzy logic is described in section 9.

3. Background Quake III Arena Bot 13

3.5 Neural networks

A neural network (NN) [2] is a parallel distributed information processing structure based
on the way biological nervous systems, such as the human brain, process information.
This information processing structure consists of processing elements that are
interconnected via signal channels, much like there are synaptic connections between
the neurons in the human brain. Neural networks can differ in their number and
arrangement of neurons, the way their neurons are connected, the specific kinds of
computations their neurons perform and the way they transmit patterns of activity
throughout the network. A human-like technique of learning is used to resolve problems
with a neural network. Just as in biological systems, learning involves adjustments to the
synaptic connections that exist between the neurons. A learning process called training
is used to configure the neural network for a specific application, for instance data
classification or pattern recognition. Different training strategies can be applied with
different results and various learning rates.

Neural networks are being applied to an increasing number of real world problems. Their
primary advantage is that they can often solve problems that are too complex for
conventional technologies, problems that do not have an algorithmic solution or for
which an algorithmic solution is too complex to be defined. In general, neural networks
are well suited to problems that people are good at solving, but that are hard to solve
with programmed computing. These problems include pattern recognition and
forecasting, which requires the recognition of trends in data.
Neural networks can also be used by bots to store and acquire different kinds of
knowledge. Training of neural networks can be especially useful for a bot to acquire
certain kinds of domain knowledge. Much like fuzzy logic a neural network can also be
used by bots to express how much they want to have, or do certain things. A neural
network can be trained in advance before a bot enters the game. During the game the
bot will then only retrieve knowledge stored in the neural network. It is also possible to
train a neural network during gameplay, which allows the bot to acquire all kinds of
knowledge. However training of a neural network is often a time consuming process.
The learning capabilities of the neural network will often have to be limited due to the
time constraints in a real-time application like a game. Although neural networks can be
useful in several areas in bot AI they are not used for the Quake III Arena bot.

Figure 3.4: Example of a neural network

input output

connections processing elements
or neurons

3. Background Quake III Arena Bot 14

3.6 Expert systems

An expert systems [7] is a system that stores human expertise, gained from training and
experience. Such a system has three important aspects. The knowledge of facts, the
knowledge of relations between the facts, and a heuristic or efficient method for storage
and acquisition of this information. The construction of an expert system is called
knowledge engineering. A knowledge engineer extracts the knowledge (procedures,
strategies, information filters, common events, etc.) out of human experts and transforms
this knowledge into an expert system. The key issue in expert systems is the way
knowledge is stored in, and extracted from the knowledge base. Logic systems provide
powerful tools to represent and infer knowledge in an expert system. Production rules or
rule-based systems are therefore often used to implement an expert system. Production
rules originate from the IF (…) THEN structure, which is known from traditional
procedural languages. The rules consist of a condition side (the antecedent) and an
action side (the consequent): IF (condition) THEN (action). The condition is a logical
expression of facts from the knowledge base. The action either creates one or more new
facts, removes facts or triggers certain events. The difference in rule-based
programming as opposed to conventional programming lies in the fact that the
statements in conventional programming languages are executed in a predefined order.
Rule-based systems use an inference engine, which determines the rules to be fired
based on the current facts. In this way new facts can change the course of the program
as it proceeds to fire other rules, that are not necessarily stored consecutively to
previously fired rules.
An expert system can be used to implement the reasoning of a bot. The expertise from
human players is extracted and stored in a knowledge base. Production rules can be
used to create new facts or initiate certain actions. For instance the bot could use the
following production rule: IF the bot is fighting AND the bot is low on health AND the bot
does not have a powerful weapon THEN retreat from the fight. The concepts “low on
health” and “does not have a powerful weapon” are not clear facts in this example.
Fuzzy logic as described in section 3.4 can be used to give a clear meaning to such
concepts. A value of truth can be attached to the statement “low on health” based on the
amount of health the bot has. In the same way a value of truth can be attached to the
concept “the bot does not have a powerful weapon” based on the weapons and
ammunition the bot is carrying. Using a fuzzy relation, it is also possible to combine the
concepts “low on health” and “does not have a powerful weapon” into the new concept
“the bot is not fit enough to fight”. The example production rule could then be replaced
by: IF the bot is in a fight AND the bot is not fit enough to fight THEN retreat from the
fight. A neural network as described in section 3.5 could also be used to give a clear
meaning to the concepts “low on health” and “does not have a powerful weapon”.
An inference engine of some kind can be used in combination with production rules as in
the examples. However, such production rules are also often just listed in several
procedures. The Quake III Arena bot uses production rules to explicitly represent certain
knowledge and make certain decisions. The usage of these production rules is
described in section 15.

3. Background Quake III Arena Bot 15

3.7 Genetic algorithms

A genetic algorithm (GA) is a search procedure that uses the mechanics of natural
selection and natural genetics. A genetic algorithm was first developed by J.H. Holland
in the 1960's. It uses evolutionary techniques, based on function optimization to develop
better solutions to a problem. First a population of possible solutions to a specific
problem is generated. The better solutions are then recombined with each other to form
new solutions. These new solutions are used to replace the poorer of the original
solutions. When creating new solutions they are often slightly mutated in order to keep
the search domain somewhat larger, and perhaps find solutions that were not
anticipated. This process of natural selection is repeated many times to acquire the best
solution to the problem.
A genetic algorithm can be used on a collection of bots where each bot is slightly
different. The process of recombining better bots to new ones, and replacing the bots
that perform less good with the new ones, can be used to let a better bot evolve. Genetic
algorithms can also be used to optimize subsystems used for the AI of a bot. For the
Quake III Arena bot a genetic algorithm is used to optimize fuzzy logic for specific
purposes. The experiments with this genetic algorithm are described in section 9.

4. Related work Quake III Arena Bot 16

4. Related work

4.1 FPS games & AI

Several first person shooter (FPS) games have been developed before Quake III Arena.
The graphics engines of these games steadily advanced over the years. However such
a continuous progression is not quite found for the artificial intelligence of the opponents
in these games. Some of the most important and influential FPS games over the years
are listed here.

In 1993 one of the first 3D shoot-em up
games saw the light of day: Wolfenstein 3D.
This game by id Software set a standard for
FPS games to come. The player has to
navigate through a maze-like map taking out
enemies on the way. The enemies are
usually on patrol through the maze and
initiate an attack when the player is sighted.
When the player runs away the enemies can
chase the player but they are limited in their
ways. They can open doors but usually try to

reach the enemy navigating in a more or less straight line. As a result they easily loose
track of the player in the maze.

In 1994, Doom set a new standard for FPS
games. This game, also developed by id
Software, has a much more advanced
graphical engine than Wolfenstein 3D. The
opponents however, are not notably smarter
than the enemies in Wolfenstein. In this game
the player also has to go through maps taking
out numerous enemies. There are a variety of
different opponents of which some are able to
fly.

In 1995 3D Realms released the FPS
game Duke Nukem 3D. The graphical
engine in this game is slightly more
advanced than the Doom engine. Not all
the floors and ceilings are necessarily
horizontal, and the player is able to swim
in certain areas. The opponents however,
are not notably smarter.

Figure 4.1: Wolfenstein 3D, 1993 by id Software

Figure 4.2: Doom, 1994 by id Software

Figure 4.3: Duke Nukem 3D, 1995 by 3D Realms

4. Related work Quake III Arena Bot 17

Quake was released by id Software in
1996. In this game the player has six
degrees of freedom. In previous games
the player was only able to turn left and
right. The player can now also look up and
down and the view tilts slightly when
running around a corning. The opponents
and items are modeled as true 3D objects
instead of flat images (sprites) as used in
previous games. The artificial intelligence
of opponents is still relatively simple as in
previous games. Some of the enemies
patrol through the environment and initiate
an attack when they sight the player or hear sounds from the player.

Quake II was released late 1997 by id
Software. This time around not only the
graphics engine got more advanced. The
opponents appear more intelligent than
the opponents in previous games. The
enemies are able to duck to avoid
incoming missiles, and they also do a
much better job at chasing when the
player runs away from a battle.

In 1998 Unreal was released by Epic. This
was the first game to ship with artificial
players or bots. Such a bot can be used
as a substitute for a human player in any
of the multiplayer game modes. The bots
appear considerably smarter than the
enemies in previous games. To navigate
through the game environments the bots
use waypoints. These waypoints are
placed throughout the environments.
Using these waypoints the bots can find
specific locations on the map and retrieve
items and powerups to put up a better
fight.

Figure 4.4: Quake, 1996 by id Software

Figure 4.5: Quake II, 1997 by id Software

Figure 4.6: Unreal, 1998 by Epic

4. Related work Quake III Arena Bot 18

In 1998 Valve Software released Half-Life.
Although the graphics engine is not
revolutionary the game does add to the
genre of FPS games. In this game the
player is up against both aliens and the
army after a failed scientific experiment.
The opponents seem able to team up with
each other and team members can
provide suppressing fire. Interesting are
also the scientists and security guards in
the game. They can follow the player
around and often open secured doors if
necessary. The security guards can also

attack enemies when they come into sight. However in such an attack little attention is
paid to friendly forces that might be in their line of sight. As a result security guards will
often hurt co-workers or the player. The security guards do not seem to care much about
their own lives as they never abandon a fight and keep shooting at enemies till either
party dies. Overall Half-Life does bring some new and interesting artificially intelligent
behaviour into the genre of FPS games.

In 1999 Unreal Tournament was released
by Epic. This game is mostly a multiplayer
game where in single player mode the
player works his way through a
tournament playing against bots, much
like playing with human players on a
network or online. These bots are quite
sophisticated and do a pretty good job at
simulating human players. The bots can
also play the included team games like
Capture the Flag (CTF), Assault and
Domination. Just like the bots in Unreal
these bots use waypoints to get around
the levels.

4.2 Previous work

Before and during the development of the Quake III Arena bot there was little literature
available on the subject of artificial players for FPS games. Due to the lack of a solid
literature foundation a lot of experimenting was required for the development of the
Quake III Arena bot. Unreal Tournament is a game very similar to Quake III Arena which
also uses artificial players to provide a single player experience. However this game did
not provide any reference material because it was released only shortly before Quake III
Arena, and the development of both games was mostly concurrent. The previous
development of the Omicron bot for Quake and the Gladiator bot for Quake II did
however provide a solid base for tests and experiments. The experience gained from the
development of these bots was used to create Quake III Arena bot.

Figure 4.7: Half-Life, 1999 by Valve Software

Figure 4.8: Unreal Tournament, 1999 by Epic

4. Related work Quake III Arena Bot 19

4.2.1 Omicron bot

The Omicron bot [31] is an artificial player for the computer game Quake. Quake is,
much like Quake III Arena, a first person shoot-em up game. However Quake is not
solely focused on playing with other people on a network or the Internet. The game also
includes a single player experience where the player goes through several dimensions
eliminating numerous demons and other enemies.

Figure 4.9: An Omicron bot

The Omicron bot does not play the single player game. The bot was created to emulate
a human player as an alternative to playing with other people on a network or online.
The Omicron bot is very limited in both design and technology due to the language it
was coded in. This language is QuakeC, which is similar to the commonly used
programming language C. QuakeC is used to modify the game and implement the AI.
QuakeC has no means to implement complex data structures and string manipulation is
not possible. The code is interpreted by the game, which makes it relatively slow.

The bot has no prior knowledge about the environment when it enters the game and has
to find its way around while playing. The bot wanders around and drops bread crumbs or
waypoints as it goes. These waypoints allow the bot to find back locations along the
route it followed.

Figure 4.10: Quake map with waypoints represented by blue stars

After wandering through the whole map the bot should be able to travel to most locations
on the map. However a lot of locations are still hard to reach for the bot at that point. The
bot relies on very limited functionality to explore its environment. The bot is much like a
blind man exploring his surroundings with a stick.

4. Related work Quake III Arena Bot 20

The Omicron bot comes with a variety of bot characters. Although these characters have
not much more depth than their own outfit, name and personal chatter, human players
often have the illusion that all bots have different personalities with different skills and
abilities. The bot uses fuzzy logic to decide on how much it wants to have or do certain
things. Fuzzy logic is also used for weapon preferences and to decide which items the
bot wants most. These preferences are the same for all bot characters.

4.2.2 Gladiator bot

The Gladiator bot [32] is an artificial player for the computer game Quake II. This game
is the successor of Quake. Quake II is much more focused on the single player
experience with a compelling story line. However there is also a multi player experience.

The Gladiator bot is created, just like the Omicron bot, as an alternative to playing with
other people on a network or the Internet. The bot does not play the single player game.
Unlike the Omicron bot the Gladiator bot is not limited due to the language it is coded in,
or due to how the bot code cooperates with the game program.

Figure 4.11: Quake II bots

A whole range of different Gladiator bot characters are available for people to play with.
These characters have a lot more depth than just a different name and looks. The
characters have their own play style and preferences. These preferences are stored in
personal fuzzy logic for each bot character.

Several new systems have been developed for the Gladiator bot. The Quake III Arena
bot uses and builds upon a lot of technology that has first been developed for the
Gladiator bot.

5. Bot architecture Quake III Arena Bot 21

5. Bot Architecture

5.1 Layered architecture

The Quake III Arena bot is build up in several layers. The awareness of decisions the bot
makes while playing the game increases with higher layers. The decisions from higher
layers are executed through lower layers. The layered structure of the bot is shown in
figure 5.1.

The 1st layer is basically the input and output layer for the bot. The Area Awareness
System is the system that provides the bot with all the information about the current
state of the world. Information about the state of the world is received as a set of
variables directly from the game program. For fast and easy access and usage, a lot of
formatting and pre-processing is performed on this information. Everything the bot
senses goes through the Area Awareness System.
The basic actions are the output of the bot. The output is formatted in a way that
conforms to the parameters of the game. The output of the bot is the player input for the
game, much like a human player uses a keyboard and a mouse.

The 2nd layer provides the intelligence that is often subconscious to skilled human
players. This layer includes AI to select goals using fuzzy logic, AI to navigate towards a
goal, AI to interpret chats, AI to construct chat messages and also functionality to store
and retrieve characteristics of bots is included.

The 3rd layer is a mixture of production rules (if-then-else) and an AI network with special
nodes for different situations and states of mind. This network is very similar to a state
machine. All the higher-level thinking and reasoning takes place in this layer. This layer
also contains a command module which allows the bot to understand orders and
commands from other players or a team leader. The miscellaneous AI module contains
AI to support behaviour used in, and decisions made in the AI network. This includes AI
for the fighting behaviour of the bot and AI to navigate around obstacles and solve
puzzles.

The 4th layer is the “brain” of the team leader or command center. In a team game one of
the bots is designated to be the team leader and has this extra “brain” used to command

Figure 5.1: Layered architecture

Team leader AI

Misc. AI AI Network Commands

Character Fuzzy Chats Goals Navigation

Area Awareness System Basic Actions

4th

3rd

2nd

1st

5. Bot architecture Quake III Arena Bot 22

teammates. This allows the team leader to organize the team and accomplish tasks in a
team.

The whole game typically runs in small time steps or frames, which is referred to as
time-based simulation. Each frame the time and the whole game world advance a little
bit. The ingame physics are also computed in a series of steps synchronous with the
game. The bot’s “brain” also operates in frames but not necessarily synchronous with
the game. The bot’s “brain” always operates at 10 Hz. Every tenth of a second the bot
checks upon its status and situation and decides for the best actions to be taken. The
bot uses the information available from the Area Awareness System to stay up to date
about its status and the environment.

5.2 Information flow

Figure 5.2 shows the information flow between the layers.

All the arrows that go upwards in figure 5.2 represent the flow of information about the
bot’s status and it’s environment. The bot uses this information to stay up to date on
what is happening in the game world. The bot also uses this information to decide which
actions should be taken in order to achieve certain goals in the game. This information
usually becomes more abstract as it propagates towards higher layers. All the arrows
that go downward represent the flow of information resulting from decisions the bot
makes. These decisions and the resulting information eventually translate into a
sequence of basic actions. These basic actions represent the player input of the bot.

Aside from the information flow between the four layers there is also limited
communication between components within one layer. The AI Network in the third layer
retrieves information from both the Miscellaneous AI and Commands component. In the
second layer the Goals component retrieves information from the Fuzzy component for
goal selection.

4th

3rd

2nd

1st

Team leader AI

Misc. AI AI Network Commands

Character Fuzzy Chats Goals Navigation

Area Awareness System Basic Actions

Figure 5.2: Information flow through layers.

5. Bot architecture Quake III Arena Bot 23

Code at higher layers requests information from lower layers. Information that is readily
available can be used immediately. Calculations might be required to retrieve certain
information. Such calculations are performed immediately and may not take up more
than several milliseconds. If a calculation takes up too much time the game might hitch,
because the game simulation only continues as soon as the calculation is completed.

5.3 Structure of game engine

The code of the game engine including the bot AI is structured as shown in figure 5.3.

The “Game” module sets the rules for the game and dictates how the game works. The
“Server” module provides the functionality for players to connect to the game. The
“Client”, “Client Game” and “Renderer” modules together provide the Input/Output (IO)
functionality for a human player. The “Client” module records input from the input
devices and sends it to the server. This module also forwards information from the
server about the game, and what is visible to the player to the “Client Game” module.
The “Client Game” module interprets this information and sends the necessary data to
the “Renderer” which provides a 3D image to the player. The “Client Game” module also
sends back information about sounds to the “Client”, which makes the sounds audible to
the player.
In figure 5.3 the bot AI is shown in two parts: the lower two layers and the upper two
layers. The “Game” module provides the Area Awareness System with all the necessary
information about the state of the game world. This information consists mainly of entity
data. The position, type, appearance etc. of entities in the game are communicated to
the Area Awareness System. The bot input, a sequence of basic actions or intentions,
generated by the bot, is sent directly to the “Game” module.

Game

Server

Client

Client Game

Renderer

Bot Lib (1st & 2nd layer)

Bot AI (3rd & 4th layer)

networking

Figure 5.3: Integration of bot AI with the game engine.

Client code providing
the IO functionality for

human players

3D image

Player input

Sound

6. Area Awareness System Quake III Arena Bot 24

6. Area Awareness System

6.1 AAS

The Area Awareness System (AAS) is the whole system used to provide the bot with all
the information about the current state of the world. This includes information about
navigation, routing and also other entities in the game. All the information is formatted
and preprocessed for fast and easy access and usage by the bot. The heart of AAS is a
special 3D representation of the game world. All information provided to the bot is in
some way related to or linked with this 3D representation.

A waypoint system is commonly used for routing and navigation purposes in 3D
environments. The basics of a waypoint system are described first, in order to explain
the basics of the 3D representation used for AAS. A waypoint system used for routing
and navigation is a collection of nodes with links between them. For navigational
purposes the links between these nodes have specific properties. The most important
property is, that one can easily travel from one waypoint to another if they are linked. In
other words the navigational complexity to reach one waypoint from another along a link
is minimal, for instance the navigation along a straight line. A waypoint system with such
a property is the result of a “divide and conquer” approach. Traveling from one waypoint
to another is a sub problem with a simple solution. All places reachable from waypoints
should now be reachable from any waypoint by traveling along one or more other
waypoints. The disadvantage of using waypoints is that correctly determining if a point is
reachable from a waypoint, or if a waypoint can be reached from a certain point, still
involves complex and time consuming real-time calculations.

AAS has a similar property as the waypoint system. AAS uses 3D bounded hulls, called
areas, with a specific property: the navigational complexity for traveling from any
reachable point in an area to any other reachable point in the same area is minimal. In
Quake III Arena this means a player can move between any such two points by just
walking or swimming along a straight line.

Of course only knowing this property of each area does not provide all the information
required for routing and navigation. However, so called reachabilities between areas can
be calculated. Such a reachability is created from one area to another if a player can
easily travel from one area to the other. Calculating these reachabilities is not all that
difficult because a lot of areas will touch each other. When two areas touch, it can easily
be verified if a player can really travel from one area to the other. This does not cover all
the possible reachabilities between areas, but as will be shown later on, calculating other
reachabilities is sometimes more complex, but definitely possible.
The system, as it is presented here, is primarily focused on navigation and routing.
However a lot of other information can be retrieved from or linked to this 3D
representation.

6. Area Awareness System Quake III Arena Bot 25

6.2 Creating areas

To satisfy the basic navigation property of AAS, areas will have to be created with
minimal navigational complexity from any reachable point in an area to any other
reachable point in the same area. A convex open space has this property. Convex areas
do not have obstacles within them that can make the navigation more difficult. If a player
can swim in an area, then the convex area always has minimal navigational complexity.
However if the player has to walk through the area, then the requirement of the area
being convex is not restrictive enough. The reason is that convex areas can still have
gaps in the ground the player can fall into. However areas with gaps can be subdivided
into multiple areas that do not have gaps. Basically all convex areas either have minimal
navigational complexity or can easily be transformed into such areas. The areas do not
have to be convex based on the visual geometry in Quake III Arena, but have to be
convex for navigation. The basics of the collision detection in Quake III Arena will be
outlined to acquire a better understanding of what convex for navigation actually means.

Collision detection

Quake III Arena uses bounding boxes for collision detection. The player resides inside
such a bounding box and there is only collision with this bounding box. The detailed
player model that is visible in the game is not used for collision detection. The bounding
boxes are axial; the bounding planes of the box are aligned with the coordinate axes of
the game world. The bounding boxes are never rotated so the bounding planes always
stay aligned with the coordinate axes. The blue outlines in figure 6.1 show a bounding
box. The red cross inside the bounding box is the origin of the box. In the picture the
bounding box of a player is shown. However a bounding box of any size can be used for
collision detection in Quake III Arena.
The Quake III Arena world is built up using so called brushes, which are convex building
blocks. A brush is a volume bounded by a number of planes. The space contained
between these bounding planes is convex. The normal vectors of the bounding planes of
a brush point outward. For instance, the green cube in figure 6.1 is a brush with 6
bounding planes. In Quake III Arena there is only collision between bounding boxes and
these convex building blocks.
Collision detection calculations can be simplified because convex brushes are used, and
the bounding boxes are always axial. Instead of calculating the collision between a
bounding box and a brush, the collision between an expanded brush and the origin of
the bounding box can be calculated. For the expansion of a brush the bounding planes
have to be moved appropriate distances along their normal vectors. The expansion
distance for a brush bounding plane depends on the orientation of the plane.

6. Area Awareness System Quake III Arena Bot 26

Figure 6.1: Bounding box on cube shaped brush. Figure 6.2: Expanded cube shaped brush.

In figure 6.1 a bounding box is standing on top of a cube shaped brush. In figure 6.2 the
cube shaped brush has been expanded and now the origin of the bounding box is on top
of the brush.
The expansion distance along the normal vector of a brush plane, is the smallest
distance between the bounding box origin and the brush plane, when the bounding box
touches the brush plane. This distance is shown by the dashed line in figure 6.4 and can
be calculated as follows. Assume there are two vectors. A vector ‘mins’, which has the
minimums of the bounding box relative to the bounding box origin (blue arrow in figure
6.3). And a vector ‘maxs’, which has the maximums of the bounding box relative to the
bounding box origin (red arrow in figure 6.3). Depending on the orientation of the brush
plane, one of the corners, edges, or sides of the bounding box will collide with the plane
first.

A new vector is constructed between the bounding box origin and a point on the brush
plane where the bounding box first touches this plane. This vector, called ‘v1’, can easily
be derived from the ‘mins’ and ‘maxs’ vector and the orientation of the brush plane. The
normal vector of the brush plane is denoted with ‘n’ in figure 6.4.

Now let ‘v2’ be the inverse of the brush plane normal vector. And let ‘? ’ be the angle
between the vectors ‘v1’ and ‘v2’ then the following holds:

(v1 * v2) / (|v1| * |v2|) = cos(?) = expansion distance / |v1|
(v1 * v2) / |v2| = expansion distance
v2 is normalized and therefore |v2| = 1
v1 * v2 = expansion distance

Figure 6.4: 2D view of bounding box colliding with brush.

n

V1

?

brush

V2 Y

X

Z

Figure 6.3: ‘mins’ and ‘maxs’ vector in bounding box.

6. Area Awareness System Quake III Arena Bot 27

A problem is encountered when all brushes are simply expanded and the bounding box
origin is used to collide with these expanded brushes.

Figure 6.5: Bounding box on wedge. Figure 6.6: Expanded wedge. Figure 6.7: Beveled wedge.

In figure 6.5 a bounding box is standing on top of a wedge shaped brush. When the
bounding panes of this wedge are expanded the wedge as seen in figure 6.6 is obtained.
Clearly can be seen, that the wedge expanded too far in certain places. The origin of the
bounding box is contained within the wedge, where it should rest on top of the wedge
after expansion. Why does the expansion not work with the wedge while it worked fine
for the cube? The cube had only axial planes where the wedge does not. When two non-
axial planes are expanded, the edge that they create is expanded more than it should.
Expansion like that can be prevented by adding additional bounding planes to the wedge
shaped brush. These additional bounding planes will not change the shape of the brush,
because they are only added at the edges and/or corners of the brush. These additional
bounding planes will be called brush bevels. The required bevels are all axial planes
going through an edge or corner of the brush that are not already part of the brush. Also
along edges all planes that are parallel to one of the coordinate axes and do not change
the shape of the brush need to be added. When all these bevels are added to the wedge
shaped brush and the brush is expanded including all the brush bevel planes, the brush
as shown in figure 6.7 is obtained. As can be verified, this expanded brush has the
shape, which should be used for collision with the bounding box origin.

Besides brushes, Quake III Arena has another primitive used to build maps. This
primitive is the Bezier curve. [12] With these curves nicely rounded shapes can be
visualized in the maps. In Quake III Arena the curves are tesselated and the polygons
that approximate the curve are transformed into (invisible) brushes for collision
detection. Actually any polygon can be transformed into a brush. After adding bevels to
these brushes, they can also be expanded and easily used for collision detection. A
brush created from a single polygon has no volume, but is perfectly valid for expansion.
The first bounding plane of this brush is the plane going through the polygon boundary
points and the second boundary plane is the opposite of the first. The brush also has a
bounding plane for each edge of the polygon. Any additional bevel planes are added as
well.

Creating areas

All primitives used for collision in Quake III Arena can now be expanded. All the space
outside these expanded solid brushes is the space, where players can move around i.e.
where the origin of the player bounding box can be. At this point convex hulls can be
defined within this space. Within these convex hulls the player will be able to move with
minimal navigational complexity. These convex hulls will become the areas of AAS.

6. Area Awareness System Quake III Arena Bot 28

Binary Space Partitioning is used to create these convex hulls or areas of AAS. H.
Fuchs, Z. Kedem, and B. Naylor introduced Binary Space Partitioning (BSP) for graphics
rendering purposes [12]. With binary space partitioning a tree structure is created, a so-
called BSP tree. This BSP tree is a binary tree, which represents the entire space, an
entire map in the game. Each node in the tree represents a convex subspace and stores
a plane, which splits the space the node represents in two halves. A node also stores
references to two other nodes, which represent each half. These two nodes are often
called children or child nodes.

The BSP tree created for AAS uses the bounding planes of the expanded brushes as
split planes at the nodes. At each node one of these bounding planes is used, which
splits the space represented by the node in two halves. Only a bounding plane of an
expanded brush side, that is totally or partly in the space represented by a node, may be
used as splitter for that node. A node may not use planes as splitters, which are found,
when going from the node back to the root of the tree. No further splits are made at a
node when there are no sides from expanded brushes inside the space represented by
the node. When no further splits can be made at a node, the planes that are found when
going from this node back to the root of the tree, define the convex hull the node
represents. Nodes where no further splits can be made, will be called leaf nodes. A
selection of these leaf nodes will become the areas of AAS.

Many such BSP trees can be created from the same set of expanded brushes. The tree
best suitable for AAS is the one that defines the smallest number of convex hulls. While
building the tree, for each node the split plane will be chosen that will minimize the
number of convex hulls created. A BSP tree with a minimal number of convex hulls is
best suitable for AAS, because routing between areas has to be calculated. This will be
explained in detail in section 6.5.

The bounding planes of the brushes as shown in the image
have names that start with the first letter of their color followed
by the first letter of the side: front, back, left, right, up or down
respectively. For instance Y-F stands for the front of the yellow brush.
All nodes that split space in two halves have the name of the split plane
used. All nodes without name are convex sub-spaces where no further splits
could be made. The node with the name X represents the space surrounded by
the four brushes. The nodes with the names Y, R, G and B represent the yellow,
red, green and blue brush respectively.

Figure 6.8: BSP tree of four brushes.

Y-F

Y-B R-B

Y-L
Y-R

R-L G-R
R-R

R-F

G-F

G-L
G-B

B-L
B-B

B-R
B-F

X

B

G

R

Y

R-D

R-U

6. Area Awareness System Quake III Arena Bot 29

Constructive Solid Geometry

The more bounding planes from expanded brushes there are, the more potential splits
are made in the BSP tree. More splits usually also means more convex hulls. A lot of
potential splitters can be removed before the BSP tree is built.

Figure 6.9: Three brushes Figure 6.10: Three expanded brushes with overlap.

After expanding all the primitives used for the collision detection in Quake III Arena there
are a lot of expanded brushes that either overlap or are contained within other brushes.
Figure 6.9 shows three brushes before expansion. Figure 6.10 shows how after
expansion one of the brushes is fully contained within the other two brushes, and also
shows how the brushes overlap. All the contained brushes and brush overlap can be
removed. Contained brushes can be removed because a bounding box will never collide
which such brushes. Also one of the overlapping parts of brushes that overlap can be
removed, because a bounding box only needs to collide with one of the parts. The
removal of contained brushes and overlapping parts can be accomplished with simple
Constructive Solid Geometry (CSG) [12] operations, because the expanded brushes are
convex. After removing contained brushes and overlapping parts there are less brush
bounding planes that need to be used as splitters in the BSP tree.

More bounding boxes

So far the assumption has been made that the player is only using one bounding box.
This is not the case. When a player crouches, another, smaller bounding box is used for
collision detection calculations. This does not really provide a problem for AAS though.
Multiple sized bounding boxes can be compiled into the same BSP tree. For each
bounding box a set of brushes is created and expanded for that bounding box. CSG
operations are only performed on and between brushes that are expanded for the same
bounding box. From all sets of expanded brushes one BSP tree is created. After creating
the BSP tree it can easily be determined which bounding box(es) can move in each
convex sub-space represented by a leaf node. When a convex sub-space represented
by a leaf node contains no expanded solid brushes then all bounding boxes can move
around there. When a convex sub-space represented by a leaf node contains one or
more solid brushes expanded for a certain bounding box, then that bounding box cannot
move around there.

6. Area Awareness System Quake III Arena Bot 30

Contents of volumes

In Quake III Arena the contents of certain volumes is also defined with brushes. For
instance a water volume is defined with a special brush. The same goes for lava and
slime. These brushes that define a contents can also be expanded and compiled into the
BSP tree. The leaf nodes that only contain (parts of) these brushes, that define content,
can be marked as volumes with that content.

Solid sub-trees

The BSP tree now defines convex hulls (areas). Before another representation for these
convex hulls is created, the BSP tree can be optimized. The BSP tree contains
completely solid sub-trees. When the sub-space represented by a node contains only
solid expanded brushes and there is no “open” space between them, then the whole
node is considered solid. For AAS only the areas where the player can move around are
interesting. Obviously the player cannot move around in a completely solid sub-space.
The node that represents such a solid sub-space can still have child nodes. These child
nodes represent solid sub-spaces within the solid space represented by the node. These
solid sub-spaces are not interesting for AAS, and the tree structures that represent them
can be removed. Removing all solid sub-trees can make the BSP tree significantly
smaller. In some cases, it can more than half the total number of nodes in the BSP tree.
There are several causes for the existence of solid sub-trees within the BSP tree. One of
them is shown in figure 6.11.

Figure 6.11: Two adjacent brushes.

A BSP tree is created from these two expanded brushes and the plane used at the last
node of the tree is the plane that separates the two brushes. This node represents a fully
solid sub-space and it’s children represent the original brushes. Since the node is
already fully solid there is no need to store its children. Especially after the CSG
operations are performed on the expanded brushes this situation is quite common.

Portalisation

In order to calculate reachabilities and routes between areas (as will be done later on),
another representation is required for the convex hulls (areas). The BSP tree does store
all the information needed, but the representation cannot easily be used to calculate
relations between areas. A representation with areas that are bounded by faces would
be much more suitable. These faces are polygons that either represent solid walls or
lead to other areas. With such a representation adjacency of areas can easily be
determined, and it is easier to find or calculate geometric properties. Such a
representation can be created by portalising the BSP tree. This technique creates

6. Area Awareness System Quake III Arena Bot 31

portals between all the leaf nodes defined by the BSP tree. These portals are the faces
that bound the areas.
After portalisation the basic representation needed for AAS is created. However this
portalised BSP tree still needs some work and the whole representation can be
optimized in several ways. The BSP tree structure is also not thrown away at this point,
because it is a very useful access structure to the areas of AAS, as will be shown later
on. Each area, with the face boundary representation, is linked into the BSP tree at the
node that represents its convex sub-space.

Outside maps

A map in Quake III Arena is a space enclosed by brushes. There is no way for a player
to go outside this enclosed space. Now that adjacent areas can easily be found through
the created portals, it is possible to flood through these portals. When starting from all
known valid positions inside the map, the convex hulls these positions are in can be
found. Flooding through the portals of these convex hulls all other convex hulls or areas
that are also within the enclosed map space can be found. If all these convex hulls are
marked then all convex hulls that are not marked can be eliminated because those
convex hulls are outside the map, and a player can never move around there.

Gravitational subdivision

As mentioned earlier not all convex areas satisfy the basic navigation property required
for AAS. All areas that contain water, or another liquid the player can swim in, satisfy the
basic navigation property. However areas a player walks in can have gaps in the floor.
Basically if a player is able to stand somewhere in an area, there should not be any gaps
in the floor in the same area. If an area does have gaps the player can fall in the gaps,
and the player might not be able to move in a straight line between any two reachable
points in the area. When an area, with both places where the player can stand, and one
or more gaps in the floor is found, this area needs to be split into several areas. Every
time such an area is found it is split with a vertical plane that goes through one of the
edges of the gap. These split planes will be called gravity planes. Instead of this area a
new node is added to the BSP tree that stores the new split plane. The new node will
have the two new areas, created after splitting the original area, as it’s children. All
areas, that have both places where the player can stand and gaps in the floor, are split
with gravity planes until no such areas are left.

Figure 6.12: Area with gap. Figure 6.13: Area subdivided around gap.

6. Area Awareness System Quake III Arena Bot 32

In figure 6.12 the green area has a gap in the floor. The gap leads to the red area. In
figure 6.13 the green area is subdivided into multiple areas, using gravity planes through
the edges of the gap.

Merging areas

The BSP tree is already optimized to define the least number of convex hulls or areas. In
addition to that, there is another way to reduce the total number of areas. As long as the
new area satisfies the navigation property of AAS, two adjacent areas can be merged
into one new area. Each pair of adjacent areas is tested and merged if and only if the
new area is still convex, and no gaps are introduced to an area in which the player can
stand. When two areas are merged the BSP tree is modified accordingly. This can cause
multiple branches of the BSP tree to point to the same area.

Melting things together

The data used for AAS is the collection of all the areas with their face boundary
representation and the BSP-tree as a fast and very useful access structure to the areas.
All the boundary representations of the areas will share data. The areas will share faces,
edges of faces and vertices. This will allow to more easily find shared faces, edges and
vertices between adjacent areas.

6.3 Environment sampling

There are various ways to extract information from the 3D representation used for AAS.
Especially the BSP tree is a very useful structure, which allows to calculate and extract
certain information about the environment very easily.

Finding the area a player is in

First of all it will be useful to know which area a bot is in. Using the BSP tree there is a
very fast and easy way to calculate the area a bot is in. One can start at the root node of
the BSP tree and calculate the side of the plane, stored at that node, the origin of the
bot’s bounding box is at. Depending on the side of the plane the origin is at, one
continues with one of the child nodes that represents either the sub-space at the front, or
the sub-space at the back of the plane. At this child node one again calculates which
side of the plane, stored at the child node, the origin of the bounding box is at, and one
continues with one of it’s children accordingly. This procedure is continued until one of
the areas of AAS is found. That area is the area the bot is situated in.
The planes at the nodes are stored as a normal vector with a distance. This makes it
rather easy to determine at which side of the plane a point is located. The side of the
plane a point is at, can be determined from the sign of the dot product of the plane
normal vector and the point, minus the plane distance. If the value is positive then the
point is at the front of the plane. If the value is negative, the point is at the back of the
plane, and if the value is zero then the point is on the plane. If the origin of the bounding
box is on one of the split planes at a node, then one also continues with the child node
that represents the sub-space at the front of the split plane.

6. Area Awareness System Quake III Arena Bot 33

Recursive subdivision by the BSP tree

Collisions of the bot’s bounding box with the world can also easily be calculated using
the AAS data structures. The collision with the environment of a bot moving along a
straight line from a start to an end position can be calculated using the BSP tree.

Figure 6.14: Trace subdivided by a BSP tree.

The collision can be calculated with recursive subdivision by the BSP tree of the line
along which the bot moves. The movement along a straight line from a start to an end
position will be called a trace. Figure 6.14 shows how a trace is subdivided into several
trace segments by the planes of a BSP tree.
One starts at the root node of the BSP tree and calculates which side of the plane,
stored at that node, the trace is at. Depending on the side of the plane the trace is at,
one continues with one of the child nodes that represents either the sub-space at the
front or the sub-space at the back of the plane. In case the plane stored at the node
splits the trace, one continues with both children. At each child node one continues with
only that segment of the trace that is inside the sub-space represented by the child
node. At the child nodes one again calculates which side of the plane, stored at the child
node, the trace or trace segment is at, and one continues with one or both of its children
accordingly. This procedure is continued until all the areas of AAS and solid leaf nodes
the trace goes through have been found. When the trace is split into two trace segments
in this recursive process, one always continues first with the child node that contains the
trace segment closest to the start of the trace. This way one ends up with a sorted list of
trace segments from the start to the end of the trace. As soon as a line segment in this
sorted list enters a solid sub-space there is a collision at the start of that line segment.

Finding the areas a trace goes through

Just like collisions of a bot’s bounding box with the environment are calculated, it can
also be calculated through which areas the movement along a straight line goes.
Recursive subdivision by the BSP tree of the trace is also used here. The trace is
chopped up by the BSP tree into one or more trace segments that go through certain
areas. These areas can easily be listed and used for numerous things.

6. Area Awareness System Quake III Arena Bot 34

Areas a bounding box is in

In order to calculate if the bot’s bounding box can or will touch the bounding boxes of
other entities in the world, it is often useful to know in which area(s) the bounding boxes
of entities are. To calculate this the bounding box of the entity has to be expanded, just
like the brushes are expanded for collision calculations. This expansion is necessary,
because the not expanded bounding box can be outside all areas, when at the same
time the bot might be able to touch the bounding box while standing in a certain area.
After expansion it can be calculated in which area(s) the bounding box resides, by
testing on which side of the BSP tree split planes the bounding box is situated. This
works similar to how the area a bot is in, is found. However a bounding box is now used
instead of a point. One starts at the root node of the BSP tree and calculates which side
of the plane, stored at that node, the bounding box is at. Depending on the side of the
plane the bounding box is at one continues with one of the child nodes, that represents
either the sub-space at the front or the sub-space at the back of the plane. In case the
plane stored at the node splits the bounding box one continues with both children. At
each child node one again calculates which side of the plane, stored at the child node,
the bounding box is at, and one continues with one or both of it’s children accordingly.
This procedure is continued until all the areas of AAS the bounding box is in are found.

6.4 Reachability

Just the area representations are not sufficient for the bot to travel through the whole
map. The bot will need to know how to travel from one area to the other, if possible at all.
Therefore so-called reachabilities between areas are calculated. Such a reachability
always starts in a certain area and leads to one other area. All possible reachabilities
can be classified using about 12 different types. The different types used in Quake III
Arena are listed below:

- Swimming in a straight line
- Walking in a straight line
- Crouching in a straight line
- Jumping onto a barrier
- Walking of a ledge
- Jumping out of the water
- Jumping
- Teleporting
- Using an elevator
- Using a jump pad
- Using a bobbing platform
- Rocket jumping

The reachabilities are calculated for each area, and they link the area to another area.
They also store a start and end point of the movement along the reachability. The
reachabilities often also store a reference to the area boundary face and/or edge that
leads to the other area. Below the area a reachability is created for will be called, A1.
The area a reachability leads to, will be called A2.

6. Area Awareness System Quake III Arena Bot 35

Swimming in a straight line

The ‘swim’ reachability is one of the easiest to find in the AAS data. From each area
filled with water, or another liquid the player can swim in, one can look at the faces that
lead to other areas also filled with a liquid the player can swim in. A ‘swim’ reachability is
then created from the area to the other area which is found through the face.

Walking and crouching in a straight line

Most of the ‘walk’ reachabilities are also very easy to find. From each area one can look
at adjacent areas through the faces. When the player can walk in both areas, and there
are floor planes in both areas that meet at an edge, then a ‘walk’ reachability can be
created. Finding ‘crouch’ reachabilities is very similar to how the ‘walk’ reachabilities are
found. When the player has to crouch in either one of the two adjacent areas a ‘crouch’
reachability is created.

Several reachabilities

Boundary faces of an area on which the player can stand will be called ground faces.
Several reachabilities can be calculated using the edges of these ground faces. A
vertical plane is created through a ground face edge that is not shared with other ground
faces in the same area. Now one searches for edges from ground faces of other areas
that are on this same plane. When an edge is found to be on the same plane, the
shortest distance between that edge, and the edge used to create the plane is
calculated. Several different reachabilities can be created depending on this distance.
The edge used to create the plane will be called E1, and the edge found to be on the
same plane, E2. The figures 6.15 through 6.17 are side views, and the edges E1 and E2
are coming towards the viewer. The vertical line represents the shortest distance
between the edges E1 and E2. In all three cases the edge E2 is positioned higher
relative to the edge E1. Also in all three cases the shortest distance between the two
edges is smaller than the maximum step height. Players can walk up stairs automatically
if the step height is smaller than a certain number of units. Figure 6.15 shows a normal
step. Figure 6.16 shows a step with shallow water in area A1. Figure 6.17 shows a step
with water up to the step.

In all three cases the water is too shallow to swim in and a ‘walk’ reachability will be
created.

Figure 6.15: Step. Figure 6.16: Step with low water. Figure 6.17: Low water onto step.

E2

E1

A2

A1

6. Area Awareness System Quake III Arena Bot 36

In case edge E2 is positioned higher than the maximum step height relative to the edge
E2, one checks if a player can jump up onto the barrier. The maximum height of a
barrier, a player can jump onto, is a fixed value in the game physics. If the edge E2 is
not higher than this maximum height relative to E2, a ‘barrier jump’ reachability is
created.

Figure 6.18 and 6.19 show two cases where a ‘barrier jump’ reachability would be
created. The reachability is also created when area A1 is filled with water that is too
shallow to swim in as shown in figure 6.19.

The edge E2 can also be positioned lower relative to the edge E1. If the edge E2 is not
lower than the maximum step height relative to edge E1 a ‘walk’ reachability is created.
The player will just walk down the step and/or stairs. In case the edge E2 is lower than
the maximum step height relative to the edge E1 a ‘walk off ledge’ reachability is
created. The player will not be able to walk back up, the player will have to jump back up
or may not be able to get back up directly at all.

A ‘walk off ledge’ reachability reachability is also created when the area the reachability
will lead to is filled with water a player can swim in.

Figure 6.20 shows the situation where the player walks down a step and/or stairs. Figure
6.21 and 6.22 show cases where a ’walk off ledge’ reachability is created.

Figure 6.20: Step down. Figure 6.21: Ledge. Figure 6.22: Ledge into water.

E1

E2

A2

A1

Figure 6.18: Barrier. Figure 6.19: Barrier with low water.

E2

E1

A2

A1

6. Area Awareness System Quake III Arena Bot 37

When the edge E2 is lower than the maximum barrier height, relative to the edge E1,
one will have to make sure there are no solid objects the player might bump into when
walking off the ledge. If the edges are far enough apart, obstacles as shown in figure
6.23 can obstruct the player.

A player bounding box is traced from edge E1 to edge E2 to find such obstacles. In case
obstacles are found no reachability is created. When looking back at the reachabilities
created for steps and barriers one will notice that no such check for obstacles is used
there. The reason is, that the step and barrier height are smaller than the vertical size of
the player bounding box. Due to the expansion of the solid brushes in the map before
compiling them into the BSP tree, there simply cannot be any obstacles along that
height.

Jumping out of the water

If none of the above reachabilities were created from area A1 towards area A2 one tests
for a ‘water jump’ reachability. Players are able to jump out of the water onto a floor at
the side of the water if the floor is not too high. Such a ‘water jump’ reachability is only
created if area A1 is filled with water, and area A2 is either not filled with water or the
water is too shallow to swim in. Figure 6.24 and 6.25 show these situations.

To test if the floor at the side of the water is not too high, the distance between the water
surface and the floor will have to be calculated. The water surface is also represented by
one or more area boundary faces because water brushes are also compiled into the
BSP tree (section 6.2). In figure 6.24 an edge of this water boundary face is denoted
with E1. The edge of a ground face of the area the ‘water jump’ reachability will lead to,

Figure 6.23: Ledge with obstacle.

E1

E2

A2

A1

obstacle

Figure 6.24: Water jump. Figure 6.25: Water jump with low water onto floor.

E2

E1

A2

A1

6. Area Awareness System Quake III Arena Bot 38

is called E2. A ‘water jump’ reachability is created when the shortest distance between
these two edges is smaller than the maximum height a player can jump up to out of the
water.

Jumping

To find ‘jump’ reachabilities one looks once again at the edges of ground faces of the
areas of AAS. The two closest points on the ground of two areas is searched for. One of
the points will be on an edge of a ground face of area A1 and the other on an edge of a
ground face of area A2. In case there is a range of closest points, the point in the middle
of this range is used. Between these two points there must be one or more gaps. Such
gaps are found by tracing a player bounding box down at the points on the edges.

If the gaps exist a potential jump is predicted from area A1 towards area A2. Basically
the full player movement along the jump arch is predicted to see if the player would
bump into any obstacles. When no obstacles are found the ‘jump’ reachability is created
from area A1 to area A2. If the two points on the edges of ground faces of area A1 and
A2 are very close to each other, or the point on the edge of area A2 is situated a little bit
lower, then players sometimes do not even have to jump. The player can bridge the
gap(s) between area A1 and area A2 by running. In such a case a ‘walk off ledge’
reachability is created instead of a ‘jump’ reachability.

Teleporting

There are teleporter entities in certain maps. These entities come with a trigger brush.
When this trigger brush is touched the player is teleported instantly to another location
on the map. These teleporter brushes are compiled into the BSP tree just like water
brushes. The leaf nodes or areas that contain only these or part of these brushes are
then marked as areas that will teleport the player when entered. For each teleporter
entity one searches for the areas that were created by the teleporter brush. Such areas
are found by retrieving all the areas that are within the smallest bounding box that
contains the teleporter brush, and only selecting those areas that are marked as
containing the teleporter. From all these areas, ‘teleporter’ reachabilities are created
towards the area that the destination of the teleporter entity is in. Portals that teleport a
player work exactly the same.

Figure 6.26: Jump reachability.

6. Area Awareness System Quake III Arena Bot 39

Using an elevator

Quake III Arena also has elevator entities in certain maps. The bottom and top position
of the elevator are stored with these entities. At these two positions one looks around for
nearby areas the player can walk towards when standing on the elevator, or walk from
onto the elevator. At both positions such areas can be found by tracing in several
directions using the environment sampling functionality described in section 6.3. An
elevator goes up automatically when a player is standing on top of it. ‘elevator’
reachabilities are only created from areas nearby the bottom position towards areas
nearby the top position.

Using a jump pad

There are also jump pad entities in a lot of maps. These entities also come with a trigger
brush just like the teleporter entities. When a player touches such a trigger brush the
player is pushed in a specific direction with a certain velocity, much like an oriented
trampoline. The jump pad brush is compiled into the BSP tree just like the teleporter
brush and water brushes. The leaf nodes or areas that contain only these or part of
these brushes are then marked as areas that will push the player into a specific
direction. For each jump pad entity one searches for the areas that were created by the
jump pad brush. Such areas are found by retrieving all the areas that are within the
smallest bounding box that contains the jump pad brush, and only selecting those areas
that are marked as containing the jump pad. From all these areas ‘jump pad’
reachabilities are created towards the area that the player ends up in, after being pushed
by the jump pad and having flown through the air. The area towards which the
reachability is created is found by predicting the player movement from the jump pad to
where the player lands on the ground. The area the player lands in will be the area
towards which the reachability is created. Acceleration pads work exactly the same as
jump pads.

Using a bobbing platform

The bobbing platform is an entity that continuously moves up and down or horizontally
back and forth. Players can often stand on top of these, to travel to other locations on
the map. The positions between which the platform moves up and down or back and
forth can be calculated from the entity. At these positions one looks around for nearby
areas from which the player can move onto the platform or towards which the player can
move from the platform. Such areas are found by tracing a bounding box at the edges of
the platform. Between all combinations of areas at both positions, reachabilities are
created both going up and down or back and forth.

Rocket jumping

In Quake III Arena a player can perform a so called rocket jump. The player shoots a
rocket at the floor, and jumps at the same time. The player of course gets damaged by
the rocket but does not necessarily get killed. The rocket explosion also pushes the
player upwards. In combination with the jump the player can jump up to very high
places. For the bots, ‘rocket jump’ reachabilities are only created towards areas that
have one or more items in them. Many ‘rocket jump’ reachabilities can be created and a
lot of them are of no interest to the bot. Also it would not be good to make the routing
(see section 6.5) slow due to a lot of ‘rocket jump’ reachabilities, which the bot will not
use most of the time. ‘rocket jump’ reachabilities are also only created from the center of

6. Area Awareness System Quake III Arena Bot 40

areas the player can stand in. This is simply to choose one of many possible start points
for the rocket jump. From this center the upward velocity is calculated and the player
movement is predicted towards areas that have items in them within range. When, in the
prediction, the player is not obstructed by obstacles, and the player ends up in the right
area, the ‘rocket jump’ reachability is created.

Complexity of calculations

Calculating all these reachabilities seems to involve rather time consuming operations.
Testing each area against every other area for reachabilities is of O(n2) on the number of
areas. However in a lot of cases there is no need to test each area against every other
area. The ability to flood through the faces of one area towards other areas can speed
up calculations considerably. For some reachabilities like the ‘jump’ reachability, this
method cannot be used though. The ‘jump’ reachability is probably one of the most
complex and time-consuming reachabilities to find. However since players can jump only
so far and only jump up to a certain height a lot of areas can be discarded before trying
to create ‘jump’ reachabilities towards them. Knowing the bounds of each area can
speed up the search even more. The same of course goes for ‘rocket jump’
reachabilities.

6.5 Routing

Real-time vs. fixed pre-calculated tables

Having both the area descriptions and reachabilities, routes between areas can be
calculated. A pre-calculated table with routing data is very fast for lookup in real-time, but
the table will also take up quite some memory. The Quake III Arena environment hardly
changes, so a pre-calculated table will work in most cases. However there are also quite
a few situations where routes change due to small but significant changes in the
environment. For instance doors that only open by pushing a button located elsewhere
in the map can change the route towards a goal. To be able to deal with these situations
a real-time dynamic routing algorithm is used. Calculating routes on the fly consumes
quite some more calculation time than a simple lookup table. However in return a lot of
flexibility is obtained. Because the Quake III Arena environment does not change
continuously, part of the real-time calculated routing data is temporarily stored or cached
for fast look up. With a restricted amount of the routing cache the memory requirements
can be minimized.

Conventional algorithms

There are several algorithms readily available to calculate routes and travel distances
and/or times in a graph. Dijkstra’s algorithm and A* are two examples [11]. However,
using these algorithms a problem is encountered. The Quake III Arena maps are usually
quite complex and detailed. As a result the number of areas that are created for a typical
map, is rather high. Maps with 5000 areas or more are not uncommon at all. Not all
areas will be used for routing purposes. Only areas a player can stand or swim in are
used. Still there will be a lot of areas used for routing. Algorithms like Dijkstra’s or A* are
simply to slow for usage in real-time with such large area counts. Especially when there
is a game engine running at the same time, which consumes quite some calculation
time. Another approach is required than using one of these conventional routing
algorithms.

6. Area Awareness System Quake III Arena Bot 41

Multi-level algorithm that calculates cache

A multi-level routing algorithm is used. This routing algorithm calculates routing data with
the same accuracy as conventional routing algorithms. There are no significant
drawbacks compared to these commonly used routing algorithms. However the multi-
level routing algorithm often requires significantly less calculation time and storage
space. The routing algorithm always calculates and caches routing data for a specific
goal area. The routing cache stores per goal area, the travel times of areas towards this
goal, and the first reachability to be used from these areas towards this goal. The
algorithm does not store the travel times towards goals per source area. The routing
cache is stored per goal area, and not per source area because there are a lot of goals
in Quake III Arena that stay at fixed locations. At the same time the bot will be moving
around a lot and thus the source area will change a lot. Of course there are also goals
that move around, for instance another player when being chased by the bot. However
when the bot chases another player both the goal and source area change continuously.
Calculating routing caches per goal area will save calculation time and storage space
because the cache can be reused more often.

Routing cache and Clusters

The multi-level routing algorithm calculates routing caches at two levels. It calculates
cache for areas in a cluster and it calculates cache for cluster portals. In a map one or
more clusters with areas are created. Such a cluster is a group of connected areas.
Shared bounding faces and reachabilities connect the areas. The clusters are separated
by cluster portals, which are areas themselves. The only way to travel from one cluster
to another is through one or more cluster portals. A cluster portal always separates no
more and no less than two clusters. The cache for areas in a cluster will be called area
cache, and the cache for cluster portals, portal cache. The area cache stores the travel
times of all areas within a cluster, including the cluster portal areas that touch the cluster,
towards goal areas that are in the same cluster. The portal cache stores the travel times
of all portal areas in a map, towards a goal area which can be anywhere on the map.
Such a goal area can be any area from any cluster, including cluster portal areas.

Figure 6.27 shows three clusters separated by two portals both denoted with a ‘p’.

cluster p cluster p cluster

Per goal area, the portal cache stores
the travel time of each portal area
towards the goal area. This goal area
can be any area on the map.

Per goal area that is in the cluster, the area cache
stores the travel time of each area in the cluster
towards the goal area. This goal area can only be
an area within the same cluster, including the
cluster portals that touch the cluster.

Figure 6.27: Clusters separated by portals.

6. Area Awareness System Quake III Arena Bot 42

In general not all routing cache will be calculated. Routing cache will only be calculated
and stored for areas the bot has had, or still has as a goal. The maximum memory
requirements to store all the possible routing cache is given by the following equation:

TNA = Total Number of Areas
NCP = Number of Cluster portals
NC = Number of Clusters
NA i = Number of Areas in cluster i

Assume cache is created for all goal areas in a map. In that case portal cache is
created, which stores for each goal area, the travel times towards this goal area from all
cluster portals. Added to that all area cache is created within each cluster. Within each
cluster, cache is created for every goal area within the cluster. The number of possible
goal areas within a cluster is equal to the number of areas within the cluster including the
cluster portals that touch the cluster. For each such goal area travel times towards this
goal are stored, of all areas within the same cluster.

As an example a map with a total of 100 areas is used. 10 clusters are created with 10
areas each. 9 cluster portals separate these clusters. The total number of travel times
that would ever need to be stored in cache is: 100 * 9 + 10 * (10 * 10) = 1900. Now if the
100 areas within the map would all be part of one big cluster 100 * 100 = 10000 travel
times would have to be stored. This makes a quite significant difference in required
storage space. The less travel times that ever need to be stored, the less calculation
time will also be required to calculate them.

Calculating routing caches

The area cache is calculated with a simple breadth first routing algorithm [11]. The areas
are assumed to be nodes of a graph and the reachabilities the reversed links between
the nodes. The breadth first algorithm starts at the goal area and uses the reversed
reachability links to flood to other areas. The algorithm never floods to areas outside the
cluster. The algorithm does flood into cluster portals that touch the cluster. The
reachabilities store a travel time, which is the time it takes the bot to travel along the
reachability. These travel times are used in the routing algorithm. The areas are
assumed to be nodes of a graph, but of course the areas are not points in space. It also
takes time to travel through an area. These travel times through areas are also used in
the routing algorithm. For each area a small table is used with travel times from every
end point of a reachability that leads towards this area, to every start point of a
reachability that starts in this area and leads to another area.

M = TNA * NCP + (NAi)2

NC

i = 1

Eq. 6.5.1

6. Area Awareness System Quake III Arena Bot 43

The portal cache is also calculated with a breadth first routing algorithm. The cluster
portal areas are assumed to be nodes of a graph, and the routes through the clusters
between these portal areas, are assumed to be the links between the nodes. The goal
area is also assumed to be a node in the graph. The routes from the goal area, through
the cluster the goal area is in, towards portals of that cluster are also used as links in the
graph. The travel times for routes through clusters can be retrieved from the area cache
for those clusters.

Dijkstra’s algorithm could also be used instead of the breadth first algorithm. However
the areas in the Quake III Arena maps are usually not that different in size. Also the
travel times stored with reachabilities between areas are not that different. Due to these
properties of the Quake III Arena maps the sorting of the “nodes” in Dijkstra’s algorithm
usually takes up more time than the algorithm is faster by only visiting “nodes” once.

Using routing caches

Now that routing caches can be created they can be read from, and used for routing
purposes. Functionality is created to retrieve the travel time from a point within a source
area towards a goal area. At the same time the first reachability to be used from this
source area towards the goal area can also be retrieved. Reading this data from the
routing cache works as follows. In case the source area is a cluster portal area, the
travel time and reachability can be read directly from the portal cache. If the source area
is not a cluster portal then the travel time towards the goal is taken from each portal area
that touches the cluster the source area is in. To each of these travel times, the travel
time from the source area towards the specific portal area within the cluster is added.
From all the added travel times the smallest one is taken. This is the travel time towards
the goal in case the goal area is not in the same cluster as the source area. The first
reachability to be used from the source area is retrieved accordingly. In case the goal
area is in the same cluster as the source area, the travel time from source to goal within
the cluster is also retrieved. Then the smallest travel time is taken from the ones through
the portal areas and the one within the cluster. Here the first reachability to be used from
the source area is also retrieved accordingly.
The routing cache is created on request. As soon as the cache is needed and it is not
already available it is calculated. Retrieving routing information from the cache involves
a loop over the portals of the cluster the source area is in and some additions. However
the number of portals that enclose a cluster is usually very small, often 10 or less. This
makes retrieving routing data from the cache rather fast.

6. Area Awareness System Quake III Arena Bot 44

Optimal clusters

It has been shown that by creating clusters in a map the maximum memory
requirements for routing cache can be minimized. The question how to create clusters
that are optimal remains. First of all, clusters that all have about the same number of
areas will be preferred. If all clusters have the same number of areas then calculating
and storing routing data will take up an equal amount of time and space for any
combination of source and goal area. To minimize the calculation time and memory
requirements for routing data, the equation below should be minimized. From the
equation follows that the number of cluster portals should be minimized at all times.

TNA = Total Number of Areas
NCP = Number of Cluster portals
NC = Number of Clusters
NA i = Number of Areas in cluster i

All clusters are assumed to have the same number of areas. At least X-1 cluster portals
are required to separate X clusters. Equation 6.5.1 can now be written as:

M = TNA * (NC-1) + NC * (TNA / NC) 2

The number of portals is the number of clusters (NC) minus one. Each cluster will have
the total number of areas (TNA) divided by the number of clusters (NC) areas. Equation
6.5.2 can be written as:

M = TNA * NC – TNA + TNA 2 / NC

The minimum of this equation is found by setting the derivative
equal to zero for the variable NC.

TNA + TNA 2 * -1 * NC –2 = 0

TNA - TNA 2 / NC 2 = 0
TNA 2 / NC 2 = TNA
TNA / NC 2 = 1
TNA = NC 2
NC = TNA

From the above follows that the optimal number of clusters is the square root of the total
number of areas in a map. In the optimal case the total number of travel times that would
ever need to be calculated and stored is approximately 2 * TNA * TNA. This grows
significantly slower with the total number of areas, than TNA 2, which would be required
when a conventional routing algorithm is used. For instance with 5000 areas
2 * TNA * TNA is a little bit more than 700.000. On the other hand TNA 2 is 25 million.

Eq. 6.5.2

Eq. 6.5.3

Eq. 6.5.4

d
dNC

M

M = TNA * NCP + (NAi)2

NC

i = 1

Eq. 6.5.1

6. Area Awareness System Quake III Arena Bot 45

Now that the optimal number of clusters is known under certain conditions the clusters
still have to be created inside the map. Clusters are created by marking areas as cluster
portals. A special algorithm is used to automatically mark areas as cluster portals. This
algorithm uses geometric properties within the map to mark certain areas as cluster
portals. Areas within door openings and windows are marked by this algorithm. These
are often good cluster portals. However choosing those, the number and size of clusters
are not automatically optimized. For this purpose the map designers can create cluster
portals by hand. The map designers can do this by placing a special cluster portal brush
in the map. These cluster portal brushes are compiled into the BSP tree like water
brushes (section 6.2). The areas created from such a cluster portal brush are marked as
cluster portals. By placing these cluster portal brushes the map designers can optimize
the number of clusters and the number of areas in each cluster by hand.

More levels

The routing algorithm presented here uses two levels. The first level being routing
between the areas within a cluster. The second level being the routing between clusters.
Of course one can extend upon this idea. A third level could be added where several
clusters are grouped together, and even more levels could be added. Using a routing
algorithm with more levels can further reduce memory and calculation time
requirements. However it also introduces more overhead when for instance reading
routing data from the caches. In Quake III Arena the number of areas within maps is not
that tremendous that more than two levels are needed.

6. Area Awareness System Quake III Arena Bot 46

6.6 Entities

Other entities in the game like other players, items, moving objects like doors, etc.
provide some of the most important information for the bot. Information about these
entities, like their type, their position, bounding box size etc. is communicated from the
game program to the Area Awareness System. Within AAS, the information is stored for
usage by the bot and the entities are linked into the areas based on their position and
bounding box size. The environment sampling functionality described in section 6.3 is
used to find the areas the bounding box of an entity is in. The entities are linked into the
areas using a 2-dimensional linked list. This list works like the table shown in figure 6.28.
A dot means the entity is in a certain area.

At the dots there is a link, which allows to easily retrieve all entities within a certain area,
and to retrieve all the areas a certain entity is in. This information is useful for instance
when the bot decides to retrieve a certain item on the map. The bot will need to know in
which area the item entity resides in order to travel towards, and pick up the item.

Area 1
Area 2

Area 3

Entity 1 Entity 2 Entity 3

Area 4

Figure 6.28: Entities linked into areas.

7. Basic actions Quake III Arena Bot 47

7. Basic Actions

7.1 Human and Bot Input Interface

People that play Quake III Arena most often use the keyboard and mouse as input
devices. The keyboard and mouse buttons are used for actions like ‘move forward’,
‘move left’, ‘jump’, ‘fire weapon’ and ‘switch weapon’, etc. The left to right mouse
movement is used to turn the players view. The forward – backward movement of the
mouse is often used to look up and down.
The artificial player does not use these input devices. The bot only lives inside the
computer. However the bot is provided with a similar interface with the same kind of
functionality. The bot will use a range of basic actions that have the same, or similar
results as the input devices used by a human player. All the decisions made by the bot
will eventually be translated into a sequence of basic actions. This sequence of basic
actions is the bot’s input for the game.

Although these basic actions present an interface very similar to the interface provided
to human players, there is a slight difference. For instance in theory a human player has
no limitations on how fast he or she can change the view angles. However this is not
true in practice. The hands and arms of human players have physical limits to how fast
they can move, and how fast they can react to certain stimuli. The mouse itself, often
used to change the view angles, has physical limits too. The basic actions do not provide
these limits for the bot. These limitations will have to be explicitly implemented in the bot
AI to make the bot appear more human-like.

7.2 Actions

The basic actions the bot can use as input for the game are listed below.

Attack This action equals to a player holding down the fire button. The

bot will fire the weapon the bot currently holds.

Use The bot will use the currently held ‘holdable item’.

Respawn This action causes the bot to respawn when the bot is dead.
Human players use the fire button for this purpose.

Jump This action makes the bot jump up.

Crouch This will make the bot crouch. The bot will crouch while this basic
action is used. Just like a human player would hold down the
crouch button.

Move Up This action makes the bot move up when swimming. This equals
to holding down the jump button for human players.

Move Down This action makes the bot move down when swimming. This
equals to holding down the crouch button for human players.

7. Basic actions Quake III Arena Bot 48

Move Forward When the bot walks this action will make the bot move in the

horizontal view direction. However when under water this action
makes the bot swim in the 3D direction the bot is viewing.

Move Back When the bot walks this action will make the bot move in the
opposite of the horizontal view direction. However when under
water this action makes the bot swim backwards relative to the 3D
direction the bot is viewing.

Move Left This action makes the bot move sideward to the left.

Move Right This action makes the bot move sideward to the right.

Walk While the bot uses this action the bot will walk instead of run.

Talk While the bot uses this action a chat icon will appear above the
bot’s head and the bot also won’t be able to move.

Gesture When this action is used, the visible in game model the bot uses
will show a special animation of a gesture.

Move This action is always used with two parameters: the direction of
movement and the speed. The action makes the bot move in a
certain direction with the specified speed. Note that unlike the
common human interface the movement direction for this basic
action is independent from the view angles.

View This action will set the bot’s view angles. This action uses the
desired view angles as a parameter.

Select Weapon This action sets the bot’s weapon to be used. The weapon is
selected with a number, which is the parameter to this action.

Command Several commands can be typed on the console in the game. The
bot can use these commands with this action, which has the
command string as a parameter

Say With this action the bot can say someone to all the other players.
The message to be displayed is the parameter to this action.

Say Team This action is similar to the Say action however now the message
will only be visible to the bot’s team mates.

8. Bot Characters Quake III Arena Bot 49

8. Bot Characters

8.1 Characters

A human player can play the game with one or more artificial players. To make the game
more enjoyable and more versatile, there is a whole range of different bot characters
that play the game in their own style, and provide different challenges for the human
player. There is a centralized set of characteristics for each different bot character.
These characteristics are stored in the character module in the 2nd layer of the structure
shown in figure 5.1. A character consists of a carefully selected set of characteristics that
are applicable to the game. Of course there is no interest in characteristics that have no
relation to the game, like for instance the hairstyle of the bot. The characteristics in this
set are separate values, that affect how a bot behaves within the game in such a way
that other players can and will notice the differences between characters.

The more characteristics that can be changed per character, the more versatile the
characters can be. When more variables come into play, it can also make the different
bot characters less predictable. However, simply adding many characteristics to the set
does not work. A lot of characteristics interact with each other, or they depend on each
other in some way. Sometimes characteristics can even contradict each other.
Interaction cannot always easily be avoided. For instance there is a characteristic
“jumper” and a characteristic “croucher”. These characteristics represent the tendency to
jump and tendency to crouch respectively (mostly in fights to avoid projectiles). However
a bot cannot jump and crouch at the same time. So if for instance the characteristic
“jumper” is set to a high value this does not necessarily mean that the bot will jump all
the time, because the characteristic “croucher” could also be set to a high value. This
example clearly shows the interaction between two characteristics, which is sometimes
inevitable. However interaction is avoided and all contradiction between characteristics
is removed by choosing characteristics with clear boundaries and without overlap.

The characteristics also need to be normalized. The range of the value of a
characteristic and its influence on how the bot behaves within the game, should make
sense. For instance if there is a characteristic “camper” then the highest value should
mean that the bot camps pretty much all the time. At the same time a very low value for
this characteristic should mean the bot rarely camps. The characteristics also need to be
normalized relative to each other. For instance if there is an aim accuracy characteristic
for each of two weapons, then the values of these characteristics should have the same
effect for both weapons. How these values scale for each weapon can be quite different
depending on the kind of weapon.

When a set of characteristics is selected one should keep in mind that the perception of
human players is the most important thing. What human players think about how a bot
plays the game is more important than how the bot really plays the game. When all the
values of characteristics, that influence how a bot plays the game, are the same for all
characters, people can still have the illusion that certain bot characters play the game
quite differently based on the bot’s appearance and/or name. One has to make sure the

8. Bot Characters Quake III Arena Bot 50

used characteristics really do make a difference that can and will be noticed by human
players.

8.2 Characteristics

The characteristics that define a Quake III Arena bot character are listed below.

Name Name of the bot.
Gender Gender of the bot (male, female, it – mechanical creature).
Attack skill How skilled the bot is when attacking.

> 0.0 & < 0.2 = don't move
>= 0.2 & < 0.4 = only move forward/backward
>= 0.4 & < 1.0 = circle strafing
> 0.7 & < 1.0 = random strafe direction change
> 0.3 & < 1.0 = aim at enemy during retreat

Weapon weights File with weapon selection fuzzy logic.
View factor Scale factor for difference between current and ideal view angle

to view angle change.
View max change Maximum view angle change per second.
Reaction time Reaction time in seconds.
Aim accuracy Accuracy when aiming, a value between 0 and 1 for each

weapon.
Aim skill Skill when aiming, a value between 0 and 1 for each weapon.

> 0.0 & < 0.9 = aim is affected by enemy movement
> 0.4 & <= 0.8 = enemy linear leading
> 0.8 & <= 1.0 = enemy exact movement leading
> 0.6 & <= 1.0 = splash damage by shooting nearby geometry
> 0.5 & <= 1.0 = prediction shots when enemy is not visible

Chats File with individual bot chatter.
Characters per minute How fast the bot types.
Chat tendencies Tendencies to use specific chats when things happen.
Croucher Tendency to crouch.
Jumper Tendency to jump.
Walker Tendency to walk instead of run.
Weapon jumper Tendency to rocket jump.
Item weights File with item goal selection fuzzy logic.
Aggression Aggression of the bot.
Self preservation Self preservation of the bot.
Vengefulness How likely the bot is to take revenge.
Camper Tendency to camp.
Easy fragger Tendency to go for cheap kills.
Alertness How alert the bot is.
Fire throttle Tendency to fire continuously instead of pausing between shots.

Most characteristics have values in the range [0, 1]. The higher the value the more the
characteristic is true. The characteristics “weapon weights” and “item weight” are
references to the locations where fuzzy logic is stored for situation dependent weapon
preferences, and item goal selection respectively. This fuzzy logic is described in section
9. The characteristic “chats” is a reference to the location where the individual bot
chatter is stored. These chats are described in section 10.
Most of the above characteristics are related to the fighting behaviour of the bot. This is
not without reason. The bot is most often seen by human players during fights. As a

8. Bot Characters Quake III Arena Bot 51

result the differences in behaviour between different bot characters is most noticeable
when the bots are fighting.

Changing the characteristics to create a specific character can lead to interesting
behaviour. First of all it is questionable if creating a perfect or extremely good bot is
interesting. In general the answer to that question is no. A bot should be fun to play with.
A bot should also be suitable for training purposes. A bot that is just a little bit better than
the human player is often very suitable for training and practice. A perfect bot would not
be any fun to play with. Human players do not want to loose the game continuously.
They at least need to win every once in a while or need to know they can eventually beat
the game after a lot of practice. If the bot does not leave that option it will only frustrate
human players.

The impact of slightly changing characteristics can sometimes go unnoticed. At the
same time small changes can sometimes drastically change the bot’s behaviour. Getting
all the values of the characteristics right, and in balance can be a time consuming task,
which requires lots of testing. In Quake III Arena the bot characters do not change during
gameplay. The different bot characters are designed to be versatile yet fixed. When a
certain bot character is chosen for play, it will always have the same style of playing and
will be equally skilled as any other time that same bot is chosen to play with.

9. Bot Decisions & Preference Quake III Arena Bot 52

9. Bot Decisions & Preferences

9.1 Fuzzy Logic

The bot uses fuzzy relations (section 3.4) to specify how much the bot wants to do, have
or use something. For instance a fuzzy value is attached to how much the bot wants to
have a certain item. The fuzzy relations are based on the current state of the world and
the state of the bot. The current state is represented by a set of criteria or variables. For
each item the bot has a fuzzy relation which shows how much the bot wants to have the
item. These fuzzy relations are based on variables that represent which items the bot
has in its possession, how much of each item the bot has, how much health the bot has,
how much armor the bot has etc. The bot can evaluate the fuzzy relation for each item,
and will want the item with the heighest fuzzy value most. In the same way the bot has a
fuzzy relation for each weapon in order to choose the right weapon during combat.

Several smaller or one larger neural network could be used for the same purpose. For
instance a neural network could be trained for each item. The input to this neural
network is a set of variables that represent the state of the world. The output of such a
neural network would then represent how much the bot wants to have the item in
question. Using one larger neural network is also an option. This neural network would
have all the variables that represent the state of the world as input. The output of this
neural network would directly represent the item the bot wants most.
The Quake III Arena bot does not use neural networks for the purpose of item and
weapon selection. Training neural networks is often time consuming. This should not be
a serious problem if the networks are trained in advance before the bot enters the game.
However the training process requires algorithms of higher complexity than the ones
used for simple fuzzy relations. Since each bot character uses its own personalized item
and weapon preferences the memory requirements to store these preferences may not
be too high. The memory requirements to store neural networks are often higher than
the memory needed to store the fuzzy relations, although this somewhat depends on the
amount of detail with which the fuzzy relations are described. A neural network is much
like a black box where some input enters at one side and some output exits at the other
side. It is rather difficult to see which rules this black box implements. Although it
somewhat depends on the representation used to describe fuzzy relations, it can be a lot
easier to spot and adjust certain rules in such fuzzy relations. The advantage of using
neural networks could lie in their power to generalize from a collection of samples.
However a similar generalisation can be achieved with fuzzy relations.

9.2 Representation

The fuzzy relations that the bot uses are stored using a tree-like structure. The leaves of
this tree store fuzzy values. A node in the tree links to either leaves or nodes on the next
level of the tree. Each node selects one of the criteria, which is used for the evaluation of
the fuzzy relation. The fuzzy relations are stored in plain text using a C-like syntax.

9. Bot Decisions & Preference Quake III Arena Bot 53

weight "name"
{
 switch(/*one of the criteria*/)
 {
 case /*smaller than a certain value*/:
 {
 switch(/*one of the criteria*/)
 {
 case /*smaller than a certain value*/: return /*a fuzzy value*/;
 case /*smaller than a certain value*/: return /*a fuzzy value*/;
 default: return /*a fuzzy value*/;
 }
 }
 case /*smaller than a certain value*/: return /*a fuzzy value*/;
 case /*smaller than a certain value*/: return /*a fuzzy value*/;
 default: return /*a fuzzy value*/;
 }
}

First of all every fuzzy relation (called a weight) has a name. Different fuzzy relations are
identified by their name. C-like switch statements represent the nodes of the tree-like
structure. The switch statement selects one of the criteria or variables that represent
some part of the state of the world. The case keywords divide the value range of the
criterion into several chunks. A division of the value range is made at the value that
appears after the case keyword. The number of case keywords determines the number
of divisions. A case statement 'links' to a node or leaf on the next level of the tree when
the value of the criterion is below the value that appears after the case keyword. A
switch always has a 'default' statement. If the value of the criterion is higher than the
value that appears after the last case statement then the default keyword links to the
next node or leaf in the tree. A leaf of the tree denoted by the keyword 'return' stores a
fuzzy value.

Evaluation of a fuzzy relation

These fuzzy relations could be evaluated as follows. Evaluate a criterion at each node
and go to the next node or leaf depending on the value of the criterion. When a leaf is
reached the fuzzy value is 'returned'. However this is not the best way to evaluate the
fuzzy relation. Evaluating the fuzzy relation recursively with interpolation between
criterion divisions, results in a continuous range of fuzzy values. When a fuzzy relation is
evaluated like that it more or less smoothly generalizes the information specified in the
representation described above.

Fuzzy relation code pros and cons

There are several advantages to using the tree like structure presented here. First of all
the structure is easy to understand. The fuzzy relations can also easily be deduced from
situations. A snapshot at a certain moment in time can be taken, and all relevant criteria
can be added into the structure with fuzzy values. The fuzzy relations can easily be
created from logical reasoning and predicting common situations. The structure can also
easily be modified and adjusted. In combination with the recursive evaluation of the
fuzzy relation with interpolation between criterion divisions the structure generalizes and
covers all situations.

9. Bot Decisions & Preference Quake III Arena Bot 54

The disadvantage of using the tree like structure with switch and case statements is that
the structure grows rather large and becomes difficult to read when expressing some of
the more complex relations.

9.3 Preferences

The bot has item weights to decide which item it wants most. Fuzzy relations as
described above are used for the item weights. Every bot character has it's own
individual item weights.

weight "holdable_teleporter"
{
 switch(INVENTORY_TELEPORTER)
 {
 case 1:
 {
 switch(INVENTORY_MEDKIT)
 {
 case 1: return 60;
 default: return 0;
 }
 }
 default: return 0;
 }
}

The above fuzzy relation gives the fuzzy weight for the teleporter item, which is a
holdable item. INVENTORY_TELEPORTER is a variable that is 1 when the player has a
personal teleporter. INVENTORY_MEDKIT is a variable that is set to 1 when the player
has a med kit. A player can only hold one holdable item at any time. A fuzzy weight
higher than zero is only returned when the bot has no teleporter and no med kit. For
each item the bot has such a fuzzy relation. The bot prefers the item with the highest
weight.

The bot also has weapon weights to decide which weapon to use during combat. Fuzzy
relations as described above are used for these weapon weights. Every bot character
has it's own individual weapon weights.

Figure 9.1: Teleporter item

9. Bot Decisions & Preference Quake III Arena Bot 55

weight "Lightning Gun"
{
 switch(INVENTORY_LIGHTNING)
 {
 case 1: return 0;
 default:
 {
 switch(ENEMY_HORIZONTAL_DIST)
 {
 case 768:
 {
 switch(INVENTORY_LIGHTNINGAMMO)
 {
 case 1: return 0;
 case 50: return 70;
 case 100: return 77;
 case 200: return 80;
 default: return 80;
 }
 }
 case 800: return 0;
 default: return 0;
 }
 }
 }
}

The above fuzzy relation shows the preference a bot has for using the lightning gun
during a fight. INVENTORY_LIGHTNING is a variable that is set to 1 when the bot has
the lightning gun. ENEMY_HORIZONTAL_DIST is a variable that represents the
distance towards the enemy. INVENTORY_LIGHTNINGAMMO is a variable that
represents the amount of ammunition the bot has for the lightning gun. The lightning gun
is used only when both the bot has the weapon and the enemy is within range. The
range of the lightning bolt is 768 units. Based on the amount of ammunition the bot has
for the lightning gun the bot will more or less prefer using the weapon. From the fuzzy
relation above follows that when the bot has the lightning gun, and the enemy is within
range, the fuzzy weight is defined by the function shown in figure 9.3.

For each weapon the bot has such a fuzzy relation. Each of these fuzzy relations
describes how much the bot wants to use one of the available weapons during combat.
The bot prefers the weapon with the highest weight.

Figure 9.2: Lightning gun

50 100 200

80

70

ammunition

weight

Figure 9.3: Lightning gun fuzzy weight.

9. Bot Decisions & Preference Quake III Arena Bot 56

In the above examples the fuzzy values are not within the range [0, 1]. For instance
values like 70 or 80 are used. The range used for the fuzzy values has no impact on the
decisions and/or preferences of the bot, as long as all the weights are in balance relative
to each other.

9.4 Genetic Selection

Making sure all fuzzy relations for item and weapon preferences are in balance can be a
difficult and time consuming task. Genetic selection can be used to make optimizing and
balancing the fuzzy relations easier. With the genetic selection one can strive to balance
the fuzzy relations in such a way that certain properties and characteristics surface.

A specific number of bots, for instance 10, all using the same fuzzy logic, fight in duals.
When each bot has fought a specific number of duals the bots are ranked. These
rankings can be based on the number of wins and losses but other rankings are also
possible. Based on these rankings genetic selection is used to select two parents and
one child. The higher a bot is ranked the higher the chance that bot will be chosen as a
parent. The lower a bot is ranked the higher the chance that bot will be chosen as the
child. The fuzzy logic from both parents is interbreeded. This is fairly easy because all
bots started out with the same fuzzy logic and thus the tree-like structures are all the
same. Averaging between the fuzzy values of the fuzzy relations from both parents can
be used to interbreed. The interbreeded fuzzy relations replace the fuzzy relations from
the child. The child has now new fuzzy relations. The last step in this process is mutating
the fuzzy relations of the child. Slightly changing the values in the fuzzy relations with
random values is an option. When the fuzzy relations of the child are mutated all bots
will fight again in duals and the whole process is continued.

After repeating this process many times the fuzzy relations of the bots will tend to have
specific properties and characteristics based on the rankings, which were used for the
genetic selection. Repeating the whole process many times would be quite time
consuming if it were not possible to scale the time in Quake III Arena. Letting the time
advance much faster would make the game unplayable for human players. However this
does not provide a problem for bots. The bots can easily ‘think’ as much faster as the
time advances faster.

10. Bot Chats Quake III Arena Bot 57

10. Bot Chats

10.1 Communication with text

Quake III Arena includes team based game types like regular teamplay and CTF. The
bot needs the ability to play these game types and has to operate in teams. As a result
the bot will have to communicate with other players, both human and artificial. Human
players communicate with each other using text or chat messages. A Quake III Arena
bot does the same. The bot has to interpret messages from others and has to create
chat messages itself. Aside from the communication in a team the bot can also say
things based on certain events. For instance the bot could say something like “your aim
is bad” when the bot has killed an opponent.

All the chat messages the bot outputs are constructed in advance. Some variation is
possible by using random or variable strings as part of a message. The interpretation of
chat messages from other players is relatively simple. The sentences are not
decomposed into verbs, nouns, adjectives etc. The interpretation is based on keywords
found in the chat messages. A chat message can also be compared to known templates
in order to give meaning to the message.
Complex parsing and decomposition usually does not work very well in a fast pace game
like Quake III Arena. There is often not enough time for such complex analysis of
sentences. The parsing would also often fail because people have to type the chat
messages rather quickly, which causes many mistakes, errors and misspelled words.
The usage of slang in chat messages is also not uncommon.

10.2 Interpreting text sentences

Synonyms

The synonyms are used to unify chat messages from others, before further processing is
done. They are also used to add variation when the bot constructs a chat message. The
bot uses context dependent synonyms. Every context has a special flag.
A context with synonyms is stored in a text file as follows:

context flag
{
 [("word", X), ("a synonym of word", Y), ...]
 ...
}

The X and Y are values in the range [0-1]. These values are chances the synonyms are
used in chat messages the bot outputs. A chance of zero means the bot will never use
the synonym.

10. Bot Chats Quake III Arena Bot 58

A few examples:

CONTEXT_NEARBYITEM
{
 [("Heavy Armor", 0), ("red armor", 0), ("Heavy Armour", 0), ("red armour", 0), ("ra", 0)]
}

CONTEXT_NORMAL
{
 [("do not", 1), ("don't", 1), ("dont", 0)]
 [("checkpoint", 1), ("check-point", 1), ("cp", 0)]
}

When the bot unifies a chat message it replaces all synonyms with the first one listed.

Match templates

The bot uses the match templates to interpret and “understand” chat messages from
other players. The bot tries to match a message it receives with one of the match
templates. A match template is stored as follows:

template = (id, type flags);

Fixed strings and variables alternate in a match template, separated by commas. For
instance: "you are ", 0, " don't you think?" The fixed strings are placed between double
quotes. The 0 is the index of a variable. A maximum of 8 variables is allowed (index in
the range [0-7]). It is not allowed to have two consecutive variables.
The bot will try to find a match with one of several fixed strings in the template when they
are separated by the | token. For instance: "you"|"we", " are ", 0, " don't you think?" will
match to both "you are crazy don't you think?" and "we are crazy don't you think?". The
bot will try to match the strings separated by the | token in the order they are listed. An
empty string is also allowed with the | token. However the empty string always needs to
be the last one in a sequence of strings separated by | tokens, because the empty string
will always match. For instance: "I am the ", "team "|"", "leader" will match to both "I am
the team leader" and "I am the leader".
The id is used to identify the message. The type flags specify certain properties of the
message. The bot uses this id and the flags to give meaning to the message.

The bot uses context dependent match templates. Every context has a context flag and
several match templates can be grouped within a context.

context flag
{
 ...
}

An example:

MTCONTEXT_INITIALTEAMCHAT
{
 "(", NETNAME, "): ", ADDRESSEE, " defend ", KEYAREA, “ for “, TIME = (MSG_DEFEND, 0);
 ...
}

10. Bot Chats Quake III Arena Bot 59

The names NETNAME, ADRESSEE, KEYAREA, TIME and MSG_DEFEND are macros
for numbers. The bot uses the match templates in the order they are stored. The first
match found is used.

10.3 Initiating chats and Eliza chats

Just like human players the bots will sometimes say things when the environment
changes. For instance when killed, the bot could say something like “nice shot” to the
enemy. The bot can also reply to things other players say. For instance when someone
says to the bot “you are good” the bot could reply with “no I’m not that good”.

Initial chats

The initial chats are used by the bot to initiate a chat when something in the environment
changes or the bot just feels like chatting. The bot can also use them to respond to
something a team mate says. Each bot has a personal set of initial chat lines. In the
characteristics of a bot there is a reference to a location where the initial chats for that
bot are stored. The initial chats for a bot are stored as follows:

chat
{
 type "type name"
 {
 "initial chat message";
 "another initial chat message";
 ...
 }
 type "type name"
 {
 }
 ...
}

The bot can select messages based on the type name. One of the messages listed for a
specific type is chosen at random.

Reply chats

The bot uses the “reply chats” to reply to chat messages from other players. These reply
chats work very similar to the Eliza chat program [web. 3]. This chat program was
named after Eliza Doolittle and was created by MIT scientist Joseph Weizenbaum. Its
mission was to attempt to replicate the conversation between a psychoanalyst and a
patient. Eliza talks you into giving her your deepest feelings. She will not remember it in
the next sentence and keeps no recollection of anything you say. However, she has a
personality like no other program. The bots use a similar system with chat messages
that are applicable to the game.

All bots use the same reply chats because the number of reply chats tends to grow quite
large. Creating different reply chats for each bot character would be too much work and
also take up to much memory.

10. Bot Chats Quake III Arena Bot 60

Each reply chat has keys, a priority and several reply chat lines.

[key1, key2, ...] = priority
{
 "reply chat message";
 "another reply chat message";
 ...
}

Possible keys:

name key is true when the name of the bot is found in the chat message
female key is true when the bot is female
male key is true when the bot is male
It key is true when the bot is not male nor female
<"",""> key is true when the bot has one of these names, any number of names can be

listed between the < and >
"" key is true when the string between the quotes is found in the message to reply to
() key is true when the chat message to reply to matches the template between the ()

The match templates work in exactly the same way as the match templates
described above. The matched variables can be used in the reply chat messages.
For example:

[("I'm not ", 0)] = 4
{
 "yes you are ", 0;
}

The priority is a value that is relative to the priorities of other reply chats. The bot
evaluates the keys to find out if the reply chat can be used to reply to a certain chat
message from another player. A key can be preceded by a & which means that the key
has to be true. When a key is preceded by a ! the key must be false. When all the keys
with the prefix & are true, and all the keys with the prefix ! are not true, and there is at
least one key without prefix true, then the bot may use the reply chat. When several
reply chats can be used to reply to a message the one with the highest priority is
chosen.

Reply chat examples:

["hate you", !"not"] = 7
{
 "why do you hate me";
 "there's no reason for you to hate me";
}

Bots can use the above reply chat when someone types the message "I hate you".
However if a player types the message "I don't hate you" the bot cannot use the above
reply chat because of the key "not" with the prefix !. (Note: "don't" will be replaced by "do
not" because of the contraction synonyms in the synonym list.)

10. Bot Chats Quake III Arena Bot 61

["love you", !"not", &female] = 6
{
 "am I the only woman you love?";
 "I love you to";
}

Only female bots can use the above reply chat.

["camper", !"not", &<"Grunt", "Stripe">] = 6
{
 "I love camping";
 "I'm the king of all camp grounds";
 "camping with the rocket launcher is what Graeme told me to do";
 "so?.. you got a problem with campers?";
}

Only the bots Grunt and Stripe can use the above reply chat.

Bad reply chats

Unfortunately the described representation allows the implementation of reply chats that
do not work well or do not work not at all. The reply chats that are troublesome are listed
here.

[&"looser", !"not", &female] = 6
{
 "I'm not a looser";
}

All the keys in the above reply chat have either the ! or & prefix. No bot will never use
this reply chat because at least one key without prefix must be true.

[("I hate ", 0), "hate you"] = 7
{
 "are you sure you hate ", 0;
}

In the above reply chat the variable 0 does not have to be valid when the bot tries to
output the message "are you sure you hate ", 0; because the key "hate you" could be the
only key that is true. For instance only the key "hate you" is true when the bot tries to
reply to the message "we hate you".

[("get lost"), &name] = 7
{
 "I never get lost";
}

The above reply chat will never be used because there is no room for the name of the
bot in the match template. However the name of the bot is required to be in the chat
message to reply to because of the key &name.

10. Bot Chats Quake III Arena Bot 62

[("do not say ", 0, " want to ", 1), !"not"] = 7
{
 "but ", 0, " really want to ", 1;
}

The above reply chat will never be used because "not" is a sub-string of "do not say ".

["allowed"] = 7
{
 "everything is allowed.";
}

["not allowed"] = 5
{
 "why isn't that allowed?";
}

If both of the above reply chats exist then the bot will never reply with "why isn't that
allowed". If the bot for instance wants to reply to the message "cheating is not allowed"
then the bot figures out it can use both of the above reply chats according to the keys.
The message "cheating is not allowed" has the sub-string "not allowed" and also the
sub-string "allowed". Because the keys allow the bot to use both reply chats the priority
is used to select one of them. The priority of the reply chat with the key "allowed" is
higher and will be used. Changing the priorities will fix this problem.

Random strings

The random strings are used in the initial and reply chat messages to add variation. A
set of random strings is stored as follows:

rndname = {"first random string"; "second random string"; ...}

A set of random strings is used in a chat message as follows:
" part of the chat message ", rndname, " part of the chat message ";
Multiple references to random strings can be used in a chat messages. Multiple
references to random strings separated by semi colons can also be used directly after
each other.
A set of random strings may also contain references to other sets of random strings.

ferrari = {"F40"; "F50"}
BMW = {"BMW Z3"; "BMW Z8"}
cars = {ferrari; BMW; "F1 Mc Laren"}

Of course recursion has to be avoided at all time.

Chat messages

Both the initial chats and reply chats store chat messages. Random strings can be used
in these chat messages to add some variation. Variable strings from match templates in
the reply chats, or specified in code for initial chats, can also be used in chat message.
The tilde character ~ can be placed directly in front of a word in a chat message to make
sure that word will not be replaced by a synonym. All tilde characters ~ are removed
from the chat messages before a bot outputs them. Colors can also be used in chat

10. Bot Chats Quake III Arena Bot 63

messages. A color is specified with the ^ character followed by a number in the range 0-
7. Each number specifies a different color. All text after the color specification will be
shown in that color. The color specification itself is not shown in the chat message
visible to the players.

10.4 Chat reasoning

The pseudo code below shows how the different parts of the chat system are used. The
reasoning shown here takes place in the 3rd layer of the structure in figure 4.1.

if environmental change then
 if bot wants to chat then
 choose initial chat
 use random strings in chat message
 replace synonyms in chat message to add variation
 output chat message
 endif
endif

There are quite a few environmental changes that the bot might respond to with a chat
message. For different events the bot has sets of chat messages with a different type
name stored in the initial chats. The bot can often use several variables in the chat
messages denoted with a number. As value these variables can for instance have the
name of an opponent, the name of a map or the name of a weapon used by the bot or
an opponent in a fight.

In Quake III Arena there are quite a few environmental changes that might trigger the bot
to say something. The bot can for instance initiate a chat when entering or exiting the
game. When the bot is already in the game and a new map starts the bot can also
decide to chat. The bot can also initiate a chat when a map ends because either the bot
itself or someone else wins. The bot could say something like “good game!”. When a bot
is hit by an enemy projectile it might want to respond with a chat message. When the bot
was typing a message at the time, the bot could say something about it. For instance
“hey I’m trying to say something”. When the bot dies a whole range of different chat
messages can be used. The chat message is chosen based on the cause of death.
When the bot commits suicide it will say something different than when an enemy killed
the bot with for instance the gauntlet. There are different chat messages for when the
bot drowns, dies in lava or fell to its death. In case the bot is killed by an enemy the bot
can also choose to say something positive or the bot might want to insult the enemy.
Different chat messages can be used based on the death circumstances of an enemy
that dies in a fight with the bot. The bot could try to insult and for instance say “you’re a
bad looser” or the bot can praise the enemy for putting up a fair fight. The bot can also
try to make conversation and decide to say something without having a direct cause
from within the game. In this case the bot could just say something to one of the
opponents either trying to insult or praise the enemy.

When something happens the bot would like to respond to, or the bot just feels like
saying something, the bot will first check if it is in a good position in the game world to
chat. It is for instance not wise to start chatting in the middle of an intense fight.

10. Bot Chats Quake III Arena Bot 64

The pseudo code below shows how the bot deals with incoming messages.

if bot receives a message then
 replace synonyms in the message
 interpret message using match templates
 if match is found then
 perform action
 else
 if messages is a chat message from another player then
 if bot wants to reply to this message then
 find a reply chat
 use random strings in chat message
 replace synonyms in chat message to add variation
 output chat message
 endif
 endif
 endif
endif

When the bot receives a message it might decide to respond to the message. First the
bot tries to “understand” the message. The message could be from a team mate asking
or ordering the bot to do something. Another player could also try to provide the bot with
information of some kind. The match templates are used to make sense out of such
incoming messages. When a matching template is found the bot will do something with
the provided information or try to accomplish what is being ordered by a team mate.

In case the incoming message is a chat message from someone else and the bot cannot
make any sense out of it, the bot can decide to use the Eliza like reply chats to say
something. The bot goes through all the reply chats matching the keys to the chat
message, and chooses the one most suitable for reply.

11. Bot Goals Quake III Arena Bot 65

11. Bot Goals

11.1 Ingame goals

Winning the game is for a bot the most important goal, as it usually is for human players.
Depending on the game type a bot wants to win the game either as an individual or as
player operating in a team.
In deathmatch mode winning is achieved by having the highest frag count (number of
killed opponents) at the end of the game. The game ends when a player reaches the
frag limit or when the time limit is hit. The bot will strive to be the player with the highest
frag count at the end of the game. In regular teamplay the team with the highest
accumulated frag count wins. In the capture the flag game mode the team with the most
flag captures wins. In team games the bot will try to help its team towards a victory.

To win the game the bot uses a lot of sub-goals during gameplay. In deathmatch mode
and of course also during fights in team games, the bot will try to kill the enemy or the
direct opponent. The bot will have to aim and shoot at the enemy. On the other hand the
bot will also try to stay alive during such battles. The bot will try to dodge enemy
projectiles and missiles. During fights but also when no enemies are nearby, the bot will
try to gain strength by picking up items, weapons and powerups.

There are different types of sub-goals, which the bot uses to eventually win the game as
an individual or in a team. First of all a distinction is made between short term goals and
long term goals. Short term goals are goals the bot achieves while going for, or
optimizing for a long term goal. For instance the bot picks up an item, which is a short
term goal, while chasing the enemy, which is the long term goal at that point. Basically
the bot has winning the game as goal. Several long term goals are used during
gameplay to achieve this goal. While trying to achieve the long term goals the bot uses
several short term goals either to achieve the long term goal or because they can easily
be accomplished on the way. All short term goals and long term goals always involve a
position or location in the environment. For instance when the bot tries to retrieve a
certain item the bot will navigate towards the location of that item. The bot will
continuously evaluate the status on achieving the goals it has set out for. For instance if
the bot wants to pick up an item, it will continue moving towards the item until the bot
can see the item has been picked up, because it is no longer there. The bot also keeps
track of the time it is taking trying to achieve a goal. If the bot is taking too long it will
often abandon the goal and decide to do something else.

11.2 Short term goals

While trying to achieve a long term goal the bot goes for several short term goals along
the route. These short term goals are usually nearby items, weapons or powerups that
the bot can easily pick up without diverting too much from the path towards the long term
goal. Going for air is also considered a short term goal when swimming towards a long
term goal.

11. Bot Goals Quake III Arena Bot 66

11.3 Long term goals

There are a variety of long term goals the bot
uses in order to try to win the game. The most
common long term goals are items, weapons
and powerups the bot wants to have. The bot
uses fuzzy relations as described in section 9 to
decide which item(s) it wants most.

When the bot ends up in a fight it can go for
several long term goals. First of all the bot can
go for killing the enemy in a direct fight. The bot
will aim and shoot at the enemy and try to avoid
projectiles and missiles from the enemy. When
the bot does not feel fit enough to fight the bot might decide to retreat. Going for an item
that leads away from the enemy is the long term goal in this case. When the enemy runs
away the bot can decide to chase the enemy. In this case the enemy is the long term
goal. When the enemy goes out of sight the bot will run towards the last seen position of
the enemy hoping to see the enemy from there.

The bot can also decide to stay at a specific
location for a while, either waiting for an item to
respawn or because it is a spot from where the bot
can easily take out enemies. This kind of
behaviour is often called camping. In this case the
long term goal is to stay near a position that gives
the bot some advantage.

In team games the bot can have several additional
long term goals. Usually a bot is ordered by the
team leader to go for these long term goals. One
of the things a bot can do is helping out a team

mate. The bot will go towards the team mate and help fighting the enemies. The bot can
also accompany a team mate. The bot will follow the team mate around and will help
eliminating enemies encountered on the way. A bot can also be ordered to defend a key
area in the environment. Usually this key area involves an item or for instance the base
flag in CTF. Bots can also patrol a certain area. In this case the bot is usually ordered to
patrol along certain items.

There are also some special long term goals only
applicable to a capture the flag game. In CTF the
bot can try to steal the enemy flag. The enemy
flag would be the long term goal in this case. As
soon as the bot has picked up the enemy flag it
will rush back to the base. When the enemy has
stolen the flag of the bot’s team, the bot can have
returning the flag as a long term goal.

Figure 11.1: Two items which can be goals

Figure 11.2: A camping bot

Figure 11.3: A flag in a CTF game

12. Bot Navigation Quake III Arena Bot 67

12. Bot Navigation

The Area Awareness System provides all the information the bot needs to navigate
through an arbitrary environment in Quake III Arena. The bot uses frame based thinking
and the movement AI code runs every frame. The basic actions are used to create input
for the game in order to navigate through the environment. The Area Awareness System
also provides all the information required by the bot to find a path through the
environment. The bot uses two types of navigation. These are navigation in a specific
direction and navigation towards a goal.

12.1 Moving towards a goal

A goal towards which a bot moves always has to be in an area of AAS. The bot is also
always in one of the areas of AAS itself. When the bot is in the same area as the goal
the navigation is very easy due to the basic navigation property of AAS. The bot will just
navigate along a straight line towards the goal. In case the bot is not in the same area as
the goal, the routing system can be used to calculate the next area the bot needs to
travel to in order to reach the goal. The routing system can provide the reachability
towards this next area directly. However the travel times towards the goal of adjacent
areas will be used to find the next area the bot needs to travel to. The reachabilities of
the area the bot is in are used to find adjacent areas. The travel time towards the goal of
those areas is retrieved from the routing system. The area with the smallest travel time
towards the goal is chosen as the next area. The reachabilities provided by the routing
system are not used directly, because the bot can decide to avoid certain areas. These
areas can then be excluded when the bot decides which area it wants to travel to next.
When the next area to travel to is known, the reachability towards this area is also
known. The bot will use such reachabilities to travel towards the goal. For each
reachability type the bot has specialized movement AI code to travel along the
reachability.

Figure 12.1: Route through areas (only area ground faces are shown).

Each movement frame the bot first checks if it is standing on top of an elevator or
bobbing platform. If this is the case the bot will try to continue with the specialized AI

12. Bot Navigation Quake III Arena Bot 68

code for the reachability the bot was already using for this moving object. In case the bot
accidentally ended up on the moving object the bot will find a reachability for it and use
the specialized code for that reachability. When the bot is not standing on a moving
object the bot checks if it is air-borne. For each reachability type there is specialized AI
code for when the bot is air-borne and specialized AI code for when the bot is standing
on the ground or swimming. Specialized code is used for when the bot is air-borne
because the control over movement is very limited when the bot is flying through the air.
When the bot is not air-borne the bot will continue using the reachability from the last
movement frame unless the bot changed areas since. The area the bot is in, is found
using the environment sampling functionality described in section 6.3. In case the bot is
in a new area the bot will find a new reachability towards the next area on the route
towards the goal. The bot then continues with that new reachability. The bot moves from
area to area until the bot is in the same area as the goal. From there the navigation has
minimal complexity.

12.2 Moving in a direction

The bot can also just move in a certain direction instead of towards a goal. The bot does
not use the reachabilities or the routing system when moving in a specific direction. Only
the environment sampling functionality is used.
When swimming the bot can move in the specified direction without any problems until a
wall or obstacle is hit. While the bot is walking there are more different obstacles that
need to be handled. When the bot runs into a barrier the bot will verify if it can jump onto
the barrier. If this is the case the bot will jump onto the barrier. When there is no barrier
the bot checks for gaps in the floor the bot might fall into. The bot will try to jump over
gaps that are found. Before trying to jump, the jump is predicted to find out where the bot
will end up. In case the bot would end up in lava, slime or a death pit the bot will not
jump. When there are no barriers to jump onto and no gaps to jump over the bot will try
to move in the specified direction. If the bot runs into a wall the movement will fail.
The bot will mostly use this simple navigation AI code to move in specific direction during
fights, for instance to avoid enemy projectiles.

13. Bot Fighting Quake III Arena Bot 69

13. Bot Fighting

A bot is most often seen during direct fights. As a result the fighting behaviour of the bot
is rather important and a lot of settings of bot characters apply to this fighting behaviour.

13.1 Acquiring an enemy

Before the bot ends up in a fight it has to acquire an enemy. When an enemy saw the
bot first and initiates a fight the bot will quickly look around to find from where the enemy
is shooting. The bot will most likely return fire and might want to look for cover. When
there are no enemies initiating a fight the bot will continuously look out for danger.
Information is available to the bot about the positions of all potential visible players
around. However a human player has only a limited view. The field of vision is usually
limited to only 90 degrees. This view limitation has to be explicitly implemented for the
bot because it does not have this limitation by default. With this limitation the bot will also
only “see” enemies within a 90 degrees field of vision. Aside from the limited view cone,
the visibility of enemies can also be reduced by fog.
The bot, the enemy or both can be standing
in a foggy area. Enemies might go unnoticed to
the bot because of limited visibility due to fog.
When an enemy is very far away and the
appearance of the enemy only covers a small
percentage of the bot’s view the enemy might
also go unnoticed. In this case seeing and
perhaps engaging the enemy will depend on
how alert the bot is. When an enemy is wearing
the invisibility powerup the bot will not see nor
engage the opponent. However enemy fire will
make both the presence and the position of the
enemy visible to the bot.

When a bot sees an enemy it is not always a good idea to initiate a fight. When the bot is
low on health or does not have any powerful weapons it might not want to engage the
enemy. Especially when the enemy is not facing and has most likely not yet spotted the
bot it is often smart to avoid a battle. The bot will want to stay outside the enemies view
and go for some nearby items, weapons or powerups before entering a fight.

13.2 Using weapons

The bot is most often seen by human players in a battle. As a result a lot of the
characteristics also apply to how the bot fights in battles. There are several things very
important in a fight like choosing the right weapon, aiming the weapon at the enemy,
taking the right position and avoiding enemy projectiles. Using weapons, both selecting a
weapon and aiming the weapon at an enemy will be looked into first.

Figure 13.1: Enemy in fog

13. Bot Fighting Quake III Arena Bot 70

Selecting weapon

The bot uses fuzzy logic as described in section 9 to store situation dependent weapon
preferences. The preference is often based on the relative power of the weapon. Some
weapons are more powerful than others and are more easily used to kill the enemy. The
bot can also prefer certain weapons based on personal taste. However not all weapons
can or should be used in certain situations. For instance if the enemy is out of range for
the lightning bolt to hit the enemy, it is not very useful to use the lightning gun.

Aiming

When the bot has selected a weapon it still has to aim at the enemy before shooting.
There are two characteristics that affect the aim of the bot. These are the aim accuracy
and the aim skill. The bot selects a spot on or near the enemy to aim at. The accuracy
with which the bot chooses this spot depends on the aim accuracy characteristic.
Depending on the aim skill characteristic the bot will be more or less skilled in selecting a
spot to aim at in order to hit or damage the enemy. When the bot is using an instant hit
weapon like the rail gun then the spot to aim at is always right on the enemy. The aim
skill characteristic has no influence in that case. However the aim skill characteristic is
used when the bot uses a weapon that fires projectiles that travel at a lower speed and
do not instantly hit. Most often the enemy will not be standing still at one position during
a fight. The enemy could be moving around a lot to avoid projectiles. The enemy could
also be running away, or towards an item. When the enemy is moving a lot the bot
should not fire slow projectiles at where the enemy is at the time of firing. If the bot would
fire at the current position of the enemy, then the enemy is most likely somewhere else
by the time the projectile arrives at that position. If the bot is not very skilled it will not
take enemy movement into account at all when firing. When the bot is a little bit more
skilled the bot will linearly extrapolate the position of the enemy. The bot will then aim at
the extrapolated position. The surrounding geometry and the path the enemy is likely
following, are not taken into account. The very skilled bots will predict the enemy
movement much more accurately. These bots take the physics and surrounding
geometry into account to predict where to aim to get the projectile to hit the enemy.

Aside from taking the visible movement of the enemy into account the bot can also take
certain aspects of weapons into account. For instance projectiles that inflict radial
damage when exploding on impact can be aimed at nearby geometry. Even when the
enemy tries to avoid the projectile the enemy might still get damaged from the nearby
explosion.

When the enemy goes out of sight during a fight the skilled bots will predict where the
enemy will show up again. The bot will shoot projectiles that inflict splash damage when
exploding on impact at the position where the enemy is likely to show up. The bot uses
the reachabilities and routing from AAS to predict where the enemy is likely to show up.
The bot always assumes the enemy is coming back into view using the shortest path
towards the bot. This shortest path from the last seen enemy position towards the bot is
predicted. The bot will shoot projectiles that inflict splash damage at the first visible
position along this path. This works especially well when the bot is retreating and the
enemy is chasing.

13. Bot Fighting Quake III Arena Bot 71

Sometimes an enemy hides behind a pillar or behind a box as illustrated in the top down
view in figure 13.1. The circle with the ‘e’ is the enemy. The square is the pillar or box
and the circle with the ‘b’ is the bot. It is often a good idea to shoot projectiles that inflicts
splash damage at both sides of the box or pillar. By doing that the enemy cannot go
either way and will always get damaged by the splash damage of the projectile. The
Quake III Arena bot does not know to do this. However the bot is often moving from side
to side and the bot predicts where the enemy is likely to show up. This predicted position
will change when the bot moves from side to side and as a result the bot will fire
projectiles that inflict splash damage at both sides of the pillar or box.

13.3 Movement

To avoid enemy projectiles and to make aiming more difficult for the enemy, the bot can
perform a whole range of evasive and confusing moves. Depending on the attack skill
characteristic the bot will be more or less skilled in performing such moves during
combat. Bots that are not very skilled will not move at all during a fight. They will be easy
targets for the enemy. The somewhat more skilled bots will move back and forth towards
the enemy. This makes it a little bit tougher for the enemy to aim but the bot will still be
quite an easy target. When the bot is even more skilled the bot will “circle strafe” around
the enemy. The bot moves sideward in one direction circling around the enemy. This
makes it significantly harder for the enemy to aim at the bot. The most skilled bots will
also change the strafe direction randomly while circling around the enemy.
While moving back and forth or circling around the enemy the bot can jump to make it
even harder for the enemy to hit, or the bot can crouch to avoid projectiles. Depending
on the ‘jumper’ and ‘croucher’ characteristics the bot will have more or less the tendency
to jump or crouch respectively.

The bot will also try to take a good position based on the weapon the bot is holding.
Certain weapons are most effective at a certain range from the enemy. For instance the
shotgun does most damage at close range. On the other hand firing a rocket launcher
close to the enemy is not very wise because the explosion of the rocket would also
damage the bot.
The bot can also take positions that provide an advantage in general. Usually higher
positions provide an advantage to attack an enemy. It is easier to throw projectiles down
at the enemy.

e

b

Figure 13.2: Shooting projectiles at both sides of a pillar.

14. Obstacles and puzzles Quake III Arena Bot 72

14. Obstacles and puzzles

14.1 Obstacles

With the environmental structures available in Quake III Arena a vast range of different
obstacles and puzzles can be implemented in the game environments. For instance
doors or bars, that lead to certain items, that only open when pushing a button or
activating a trigger. Quake III Arena is mostly a fighting game and thus only few
obstacles and puzzles are implemented. However the Quake III Arena bot has AI for the
few maps that use buttons and triggers.

Due to the nature of AAS only dynamic objects in the Quake III Arena environment have
to be considered as obstacles. All “fixed obstacles” are compiled into the AAS data
structure and need no special handling. The dynamic objects are entities within the
environment that can in some way move or change positions. These entities include
other players, doors, elevators, bridges etc. The presence or absence of such objects
within the areas of AAS can be an obstacle to the bot.

The movement code in the second layer checks if the bot bumps into obstacles. A
simple trace in the movement direction reveals any objects the bot would walk into. The
movement code will give feedback to higher layers about any such obstacles. From
there the bot can do last minute handling of these obstacles. When the bot runs into a
player it can try to navigate around the player. The bot can try to do the same with a
door, however if the door does not open when approached, it often has to be opened
with a button or some kind of trigger. Walking into obstacles like this and then trying to
figure out what to do, works in a lot of cases. However there are situations where it does
not work and in general it does not make for very intelligent behaviour, when trying to
work with doors and such that are activated by buttons and/or triggers. It just does not
look very intelligent to first (literally) walk into a door and then go for the button or trigger
to open it.

14.2 Solving Puzzles

The Quake III Arena bot has AI that does not only allow for solving more complex
puzzles it also makes the bot look more intelligent. The AI used for getting around
obstacles and/or solving puzzles will be explained with an example. Figure 14.1 shows
the top down view of a very small map. This is not an actual map available in the game,
but this test map gives a fairly clear view of the kind of puzzles the bot can solve. The
picture was taken from Q3Radiant, the editor used to create and edit the Quake III Arena
maps.

14. Obstacles and puzzles Quake III Arena Bot 73

The red box is where the bot starts. The blue box is an item the bot would like to
retrieve. The map contains several walls and bars that block the bot’s path.

Figure 14.1: Top down view of a puzzle.

b1, b2 and b3 are vertical bars. b4 is a set of horizontal bars. t1 through t8 are buttons
that trigger the bars to open. t1 is a shootable button at the ceiling. t2 through t8 are
buttons positioned at walls that can be pushed. Pushing either t1 or t5 opens the
horizontal bars b4. t2 and t6 open the bars b1. t3 and t7 open the bars b2. And finally t4
and t8 open the bars b3. All bars close automatically 4 seconds after being opened.

In this particular puzzle the bot has to retrieve the item behind the bars b1. The bars are
not compiled into AAS as solid objects so the bot first assumes the bars are not there.
The bot will walk towards the item and bump into the bars b1. The bot has the ability to
find the buttons it can push or trigger in order to open the bars or activate other objects.
Inside the map the button and the door are linked with a target name. The bot can look
up this link to find the button(s) and/or trigger(s) that need(s) to be activated. A human
being will have to learn the relation between certain buttons, and what they activate, by
playing the game and trial and error. The bot could do the same but that is not a very
interesting approach. As soon as the bot has learned the relations, it has the same
knowledge that it now retrieves directly from the map.
In this case either of two buttons can be activated to open the bars b1, which are the
buttons t2 and t6. However button t2 is behind the bars b1 itself just like the item. The
bot will need to figure out it cannot go for that button. This can be accomplished by
disabling the area(s) the bars b1 are in for routing. If the areas the bars b1 are in are
disabled and cannot be used for routing the bot will not find a route towards button b1
and will know it cannot reach that button. There is still a small problem however. There
does not have to be a set of areas that exactly contain the bars b1. For instance there
could be an area that contains the bars but also stretches out in front of the bars. While
standing in front of the bars the bot could be standing in that same area. If that area
would be disabled for routing purposes, the bot would not be able to travel anywhere. So
before any areas are disabled for routing a set of areas that tightly contain the bars has
to be found.

14. Obstacles and puzzles Quake III Arena Bot 74

This is not all that difficult. Just like water, lava and slime are compiled into AAS, the
bars can also be compiled into AAS. New areas will be created that define exactly the
volume the bars occupy while closed. If these areas are flagged as containing bars or a
moving object then it will be even easier for the bot to find these areas and disable them
for routing. When the areas are disabled for routing this also means all routing cache
that in some way depends on these areas, has to be deleted because it is no longer
valid.

Now the bot can figure out it has to activate button t6 instead of button t2. The bot will
now try to activate button t6. Going towards button t6, the bot will of course run into the
bars b2. The bars b2 are again opened by pushing either of two buttons. These bars can
be handled in the same way the bars b1 are handled. When the bot continues like this
the bot will at some point run into the bars b4. To open these bars the bot will have to
walk towards a position where it can shoot the button t1, which is positioned at the
ceiling. Going towards button t1 the bot will find no obstacles and the button can be
activated without any problems. The bars b4 are opened. From here the bot can
continue with the goal it had set out for, which was retrieving the item. If the bot has no
memory it would go straight back to the item and run into the bars b1 again. Then the
bot will figure out again it has to activate button t6 and go on like this. Eventually the bot
reaches the bars b4 again. Even though the bot had opened these bars, by the time the
bot reaches them, they have already closed again because they stayed open for only 4
seconds. If the bot continues like this, it will loop forever and never retrieve the item. The
bot will need some kind of memory that stacks up the goals the bot went for, so it can
complete them in reversed order. The Quake III Arena bot uses a goal stack for this
purpose. Every time the bot figures out to activate a new button (which is a new sub
goal) the bot will push this button goal onto the stack. Whenever the bot activates a
button, the button goal will be popped from the stack. The bot then continues with the
goal that is at the top of the stack. The last in, first out (LIFO) working of the stack makes
sure the bot will activate the buttons in reversed order as soon as it is able to activate
one of them.

At this point the bot will be able to solve the puzzle but still the bot’s behaviour does not
look very intelligent. Walking into the bars, and then at the last minute figuring out how to
open them does not look very good, especially when the bot will always use this method.
To make the bot look more intelligent the bot could predict its route or part of its route
and try to find obstacles before literally running into them. The fact that the bars are
compiled into AAS, and the created areas are marked as containing bars, makes finding
obstacles along a predicted route a lot easier. The route towards the goal of the bot can
easily be predicted using the reachabilities found with the routing algorithm, and stored
in the routing cache. The bot can check for obstacles as soon as the predicted route
passes through an area, which is flagged to contain bars, a door etc. As soon as such
an area is found, the bot can figure out if the area really contains an obstacle, and if that
obstacle needs to be removed by activating a button or trigger.

15. AI network Quake III Arena Bot 75

15. AI network

15.1 The network

The central “brain” of the bot is a network with special nodes for different situations and
different goals. This AI network resides at the 3rd layer of the structure shown in section
5. All the other AI sub-systems are used from or within this network. This “brain” of the
bot is very much like a finite state machine modeled as a network of nodes with
conditional links between the nodes. The bot can only be at one node at any time. Every
think frame the bot goes through this network until the node best suitable for the bot’s
current situation is found. There is always exactly one node best suitable for the current
situation, and the bot changes nodes until it finds this specific node. Each node within
the network is optimized for a specific range of goals or sub-goals. The network also has
nodes which allow the bot to do pressing tasks while going for a long term goal. Each
node has a procedure with production rules (if-then-else) for the reasoning and decision
making of the bot. Such a procedure also implements the conditional jumps to other
nodes to make sure the best node is found for each situation. If a certain node is the one
best suitable for the bot’s current situation then the procedure for that node returns true.
Otherwise the procedure returns false.

Seek Long Term
Goal

Seek Short Term
Goal

Seek Activate
Entity

RespawnStand

Battle Fight Battle Chase Battle Retreat Battle Short Term
Goal

Figure 15.1 shows the network used by the bot. The square boxes with a name
represent the nodes. The conditional links or jumps in the network are represented by
the arrows. Some arrows go both back and forth between two or more nodes. However
each direction between two nodes along such a link has a different condition for a
potential jump. Two nodes are not shown in figure 15.1 because they would only clutter
the image. These nodes are for when the bot is in observer mode and when the game is

Figure 15.1: AI network.

15. AI network Quake III Arena Bot 76

in the intermission state between two consecutive games. Both in observer mode and
when the game is in the intermission state the bot is not playing the game. From every
other node the bot can end up in one of these two nodes. When the bot leaves either
observer mode or the next game starts the bot continues with the “Stand” node.

15.2 The nodes

The network has the following nodes:

- Respawn
- Stand
- Seek Long Term Goal
- Seek Short Term Goal
- Seek Activate Entity
- Battle Fight
- Battle Chase
- Battle Retreat
- Battle Short Term Goal
- Intermission
- Observer

When the current AI node is any of the nodes except the “Respawn”, “Observer” or
“Intermission” node the bot is “alive” and can be killed. When the bot dies in the game
the bot will always go to the “Respawn” node. In the “Respawn” node the bot will try to
respawn by using the basic action to respawn. As soon as the bot respawns the current
AI node will change to “Seek Long Term Goal”.

If the game ends then the bot will go to the “Intermission” node. When the bot ends up
in observer mode the bot will go to the “Observer” node. When the game starts or the
bot leaves observer mode the bot goes to the “Stand” node.

The “Stand” node is mostly used for when the bot is typing a chat message. While typing
a message a player cannot move nor shoot. The bot will go to the “Stand” AI node when
the bot chooses to type a message. The actual construction of chat messages and the
reaction to messages from other players is described in section 10. When an enemy
walks by, when the bot is typing a message, the bot might decide to attack the enemy. In
this case the bot will go to the “Battle Fight” node. When the bot is done typing the
message the bot will go to the “Seek Long Term Goal” node.

In the “Seek Long Term Goal” node the bot goes for one of the long term goals the bot
can have. While going for such a long term goal the bot can pickup nearby items along
the way or go for air when swimming. When the bot decides to go for such a short term
goal the bot goes to the “Seek Short Term Goal”. As soon as the bot picked up the
nearby item or recovered its breath while swimming, the bot will continue with the long
term goal and the bot goes back to the “Seek Long Term Goal” node.

While going for a long term or short term goal the bot checks for obstacles and little
puzzles that need to be solved in order to retrieve the goal. There is a special node to
handle solving puzzles as described in section 14. The bot activates buttons and triggers
in the “Seek Activate Entity” node. The goal stack as described in section 14 is also
implemented in this node. While trying to solve a little puzzle the bot might go for short

15. AI network Quake III Arena Bot 77

term goals. After retrieving the short term goal in the “Seek Short Term Goal” node the
bot will continue with the “Seek Activate Entity” node.

/*
==================
AINode_Battle_Fight
==================
*/
int AINode_Battle_Fight(bot_state_t *bs) {
 int areanum;
 vec3_t target;
 aas_entityinfo_t entinfo;
 bot_moveresult_t moveres ult;

 // if the bot is in observer mode
 if (BotIsObserver(bs)) {
 AIEnter_Observer(bs, "battle fight: observer");
 return qfalse;
 }
 // if in the intermission
 if (BotIntermission(bs)) {
 AIEnter_Intermission(bs, "battle fight: intermission");
 return qfalse;
 }
 // respawn if dead
 if (BotIsDead(bs)) {
 AIEnter_Respawn(bs, "battle fight: bot dead");
 return qfalse;
 }
 // if there is another better enemy
 if (BotFindEnemy(bs, bs->enemy)) {
 }
 // if no enemy
 if (bs->enemy < 0) {
 AIEnter_Seek_LTG(bs, "battle fight: no enemy");
 return qfalse;
 }
 // retrieve informtion on the enemy
 BotEntityInfo(bs->enemy, &entinfo);
 // if the enemy died
 if (bs->enemydeath_time) {
 if (bs->enemydeath_time < FloatTime() - 1.0) {
 bs->enemydeath_time = 0;
 return qfalse;
 }
 }
 else {
 if (EntityIsDead(&entinfo)) {
 bs->enemydeath_time = FloatTime();
 }
 }
 // if the enemy is invisible and not shooting the bot looses track easily
 if (EntityIsInvisible(&entinfo) && !EntityIsShooting(&entinfo)) {
 if (random() < 0.2) {
 AIEnter_Seek_LTG(bs, "battle fight: invisible");
 return qfalse;
 }
 }
 // position of enemy
 VectorCopy(entinfo.origin, target);
 // update the last seen enemy area and origin if possible
 areanum = BotPointAreaNum(target);
 if (areanum && trap_AAS_AreaReachability(areanum)) {
 VectorCopy(target, bs->lastenemyorigin);
 bs->lastenemyareanum = areanum;
 }
 // update the attack inventory values
 BotUpdateBattleInventory(bs, bs ->enemy);
 // if the enemy is not visible
 if (!BotEntityVisible(bs->entitynum, bs->eye, bs->viewangles, 360, bs->enemy)) {
 if (BotWantsToChase(bs)) {
 AIEnter_Battle_Chase(bs, "battle fight: enemy out of sight");
 return qfalse;
 }
 else {
 AIEnter_Seek_LTG(bs, "battle fight: enemy out of sight");
 return qfalse;
 }
 }
 // use holdable items
 BotBattleUseItems(bs);
 // travel flags the bot may use for navigation
 bs->tfl = TFL_DEFAULT;
 if (bot_grapple.integer) bs ->tfl |= TFL_GRAPPLEHOOK;
 // if in lava or slime the bot should be able to get out
 if (BotInLavaOrSlime(bs)) bs ->tfl |= TFL_LAVA|TFL_SLIME;
 //
 if (BotCanAndWantsToRocketJump(bs)) {
 bs->tfl |= TFL_ROCKETJUMP;
 }
 // choose the best weapon to fight with
 BotChooseWeapon(bs);
 // perform attack movements
 moveresult = BotAttackMove(bs, bs ->tfl);
 // if the movement failed
 if (moveresult.failure) {
 //reset the avoid reach, otherwise bot is stuck in current area
 trap_BotResetAvoidReach(bs ->ms);
 bs->ltg_time = 0;
 }
 // special AI for when the bot is blocked by an obstacle
 BotAIBlocked(bs, &moveresult, qfalse);
 // aim at the enemy
 BotAimAtEnemy(bs);
 // attack the enemy if possible
 BotCheckAttack(bs);
 // if the bot wants to retreat
 if (!(bs->flags & BFL_FIGHTSUICIDAL)) {
 if (BotWantsToRetreat(bs)) {
 AIEnter_Battle_Retreat(bs, "battle fight: wants to retreat");
 return qtrue;
 }
 }
 return qtrue;
}

Figure 15.2: C code for “Battle Fight” node.

When the bot encounters an enemy while the bot is in any of the “Seek” nodes the bot
will either fight the enemy or retreat from the enemy. When the bot feels fit enough to

15. AI network Quake III Arena Bot 78

fight the enemy the bot goes to the “Battle Fight” node. In this node the bot will fight the
enemy as described in section 13. The C code of the procedure for the “Battle Fight”
node is shown in figure 15.2. When the enemy goes out of sight the bot might want to
chase the enemy. If the bot feels like hunting down the enemy the bot goes to the “Battle
Chase” node. In this node the bot will usually go to the position where the enemy was
last seen in the hope the enemy will be visible from there. As soon as the enemy is in
sight again the bot will return to the “Battle Fight” node.

When the bot is low on health, or has no decent weapon, or just does not feel fit enough
to fight the enemy, the bot might want to retreat. In this case the AI goes to the “Battle
Retreat” node. In this node the bot will go for a long term goal that leads away from the
enemy and often also a long term goal that will get the bot back in better shape, for
instance an health item. When the bot is skilled enough it will also shoot at the enemy
while retreating.

While the bot is fighting, chasing or retreating from an enemy the bot can also pick up
nearby items and go for air while swimming. When the bot goes for such a short term
goal the bot uses to the “Battle Short Term Goal” node. As soon as the short term goal is
retrieved the bot goes back to the previous “Battle” node.

The table below shows about 42 seconds out of a bot’s life. The table shows how the bot
changes between the different AI nodes based on events and decisions. The current
goal the bot pursues in each node is shown as well.

Time
(seconds)

Event or decision Current AI
node

Current goal

18.1 The bot named Grunt enters the game. Stand -
 Bot spawns. Stand -
 Seek LTG
 Bot decides to retrieve item. Seek LTG Retrieve rocket launcher
 Bot decides to retrieve nearby item. Seek LTG Retrieve rocket launcher
 Seek NBG Retrieve bullets
19.9 Picked up bullets. Seek NBG Retrieve bullets
 Seek LTG Retrieve rocket launcher
20.6 Bot decides to retrieve nearby item. Seek LTG Retrieve rocket launcher
 Seek NBG Retrieve shotgun
21.5 Enemy in sight. Seek NBG Retrieve shotgun
 Battle NBG Kill the enemy & retrieve

shotgun.
22.7 Picked up shotgun & bot wants to

retreat.
Battle NBG Kill the enemy & retrieve

shotgun.
 Battle Retreat Retreat & retrieve rocket

launcher.
23.8 Bot decides to retrieve nearby item. Battle Retreat Retreat & retrieve rocket

launcher.
 Battle NBG Retrieve armor shard.
25.5 Picked up armor shard. Battle NBG Retrieve armor shard.
 Enemy out of sight & bot decides to

chase.
Battle Retreat Retreat & retrieve rocket

launcher.
 Battle Chase Chase enemy.
25.9 Bot decides to retrieve nearby item. Battle Chase Chase enemy.
 Battle NBG Retrieve armor shard.
28.2 Picked up armor shard. Battle NBG Retrieve armor shard.
 Battle Chase Chase enemy.
31.9 Enemy in sight. Battle Chase Chase enemy.
 Battle Fight Kill the enemy.
32.3 Enemy out of sight. Battle Fight Kill the enemy.
 Battle Chase Chase the enemy.
33.4 Enemy in sight. Battle Chase Chase the enemy.
 Battle Fight Kill the enemy.
33.5 Enemy out of sight. Battle Fight Kill the enemy.
 Battle Chase Chase the enemy.
35.4 Enemy in sight. Battle Chase Chase the enemy.
 Battle Fight Kill the enemy.
36.5 Enemy out of sight. Battle Fight Kill the enemy.
 Bot decides to retrieve nearby item. Battle Chase Chase the enemy.
 Battle NBG Retrieve plasma gun.
38.3 Bot picked up the plasma gun. Battle NBG Retrieve plasma gun.
 Battle Chase Chase the enemy.
 Bot decides to retrieve nearby item. Battle Chase Chase the enemy.

15. AI network Quake III Arena Bot 79

 Battle NBG Retrieve shells.
41.1 Bot picked up shells. Battle NBG Retrieve shells.
 Battle Chase Chase the enemy.
43.3 Enemy in sight. Battle Chase Chase the enemy.
 Battle Fight Kill the enemy.
44.7 Enemy out of sight. Battle Fight Kill the enemy.
 Battle Chase Chase the enemy.
 Bot decides to retrieve nearby item. Battle Chase Chase the enemy.
 Battle NBG Retrieve 50 health.
 Bot picked up 50 health. Battle NBG Retrieve 50 health.
 Battle Chase Chase the enemy.
46.0 Enemy in sight. Battle Chase Chase the enemy.
 Battle Fight Kill the enemy.
46.7 Bot decides to retreat. Battle Fight Kill the enemy.
 Battle Retreat Retreat from enemy & retrieve

rocket launcher.
46.8 Bot decides to go for 25 health

instead of rocket launcher.
Battle Retreat Retreat from enemy & retrieve 25

health.
47.9 Bot decides to retrieve nearby item.

(another 25 health item).
Battle Retreat Retreat from enemy & retrieve 25

health.
 Battle NBG Retrieve 25 health.
49.5 Bot picked up 25 health. Battle NBG Retrieve 25 health.
 Battle Retreat Retreat from enemy & retrieve 25

health.
 Bot decides to chase the enemy. Battle Retreat Retreat from enemy & retrieve 25

health.
 Battle Chase Chase the enemy.
51.6 Bot decides to retrieve nearby item. Battle Chase Chase the enemy.
 Battle NBG Retrieve bullets.
 Bot picked up bullets. Battle NBG Retrieve bullets.
 Battle Chase Chase the enemy.
53.5 Enemy in sight. Battle Fight Kill the enemy.
53.8 Bot decides to retreat. Battle Fight Retreat from enemy & retrieve 25

health.
 Bot decides to go for shotgun

instead of 25 health.
Battle Retreat Retreat from enemy & retrieve

shotgun.
55.6 Bot picked up shotgun & decides to

go for cells.
Battle Retreat Retreat from enemy & retrieve

shotgun.
 Battle Retreat Retreat from enemy & retrieve

cells.
57.0 Enemy killed by Grunt with the

plasma gun.
Battle Retreat Retreat from enemy & retrieve

cells.
 Seek LTG Retrieve cells.
58.1 Bot picked up cells & decides to go

for an armor shard.
Seek LTG Retrieve cells.

 Seek LTG Retrieve armor shard.
58.5 Bot picked up armor shard and

decides to go for heavy armor.
Seek LTG Retrieve armor shard.

 Seek LTG Retrieve heavy armor.
58.6 Bot picked up heavy armor & decides

to go for an armor shard.
Seek LTG Retrieve heavy armor.

 Bot decides to retrieve nearby item. Seek LTG Retrieve rocket launcher.
 Seek NBG Retrieve armor shard.
62.2 Bot picked up armor shard. Seek NBG Retrieve armor shard.
 Seek LTG Retrieve rocket launcher.
62.7 Bot picked up rocket launcher Seek LTG Retrieve rocket launcher.
… … … …

The bot starts out by gathering items until it encounters an enemy. The bot first retreats
from the enemy because it does not feel fit enough to fight. As soon as the bot has
picked up some health, the enemy has gone out of sight, the bot feels better and
decides to go in pursuit. From the 31st second till the 36th second the bot has a hard time
trying to keep up with the enemy. Every time the enemy comes in sight the bot attacks.
However the enemy fires back at the bot at the same time, and the bot gets hurt. In the
46th second the bot is quite hurt and decides to retreat. The bot picks up some items
again, and goes back into pursuit in the 51st second. The bot attacks the enemy and gets
hurt again. The bot decides once again to retreat but keeps firing at the enemy, and kills
the enemy in the process in the 57th second. The bot now continues to gain strength by
gathering items.

16. Bot Commands Quake III Arena Bot 80

16. Bot Commands

16.1 Interpreting chat messages

The Quake III Arena bots can be ordered to complete certain tasks in the team based
game modes. The bots can also answer specific questions in team play like “where are
you?”. Human players but also other bots can type chat messages and tell a bot what to
do or ask a question. The bot uses the match templates described in section 10 to make
sense out of any incoming chat messages. These match templates give the bot a
command or question id when one of the templates can be matched with an incoming
chat message. Flags that specify specific properties of a chat message are also
retrieved from a template that matches. The bot knows what each match template id
stands for and can use it to take actions accordingly. The match template flags are used
to retrieve additional information from the chat message.

Below a match template is shown that will match with for instance the chat message:
“(MrElusive): defend the red armor”.

"(", NETNAME, "): defend ", “the “|””, KEYAREA = (MSG_DEFEND, 0);

The name between the braces is the name of the player who typed the message. The
message is not specifically addressed to anyone, MrElusive just tells all team mates to
defend the red armor. The bot will “understand” the message is about defending a
specific area because of the MSG_DEFEND match template id. The name of the player
who typed the chat message and the “key area” to be defended are variables in the
match template. The bot can retrieve the values of these variables and use them. The
bot can retrieve the name of the “key area” and try to find an item with a matching name.
The bot can then decide to defend this item. The bot can also retrieve the name of the
player who typed the chat message and use this name to respond directly to this player.
The bot could for instance respond with “MrElusive I am on my way”.

Below a match template is shown that has a flag to specify a specific property of the chat
message.

"(", NETNAME, "): ", ADDRESSEE, " defend ", “the “|””, KEYAREA = (MSG_DEFEND, ST_ADDRESSED);

This template will for instance match to the chat message “(MrElusive)”: Grunt defend
our base”. In this case the match template has a flag ST_ADDRESSED which tells the bot
that the message is addressed to someone. When the bot finds such a flag in the
template it can retrieve the name of the addressee and compare it to its own name. In
this case the name of the addressee is “Grunt”. The bot will probably want to ignore the
message if it is not the addressee. Notice that the value of the “key area” variable is now
“our base”. There is no “the” in the sentence which is allowed by the match template with
the “the “ | ”” construction. The chat message should contain “the “ or an empty string “”
at that position.

Since the match templates are stored per context the bot can decide to use only the
templates for a specific contexts. The bot can also use match templates from a specific
context to try to find a match with the value of a variable retrieved from matching with a

16. Bot Commands Quake III Arena Bot 81

template. For instance if the bot retrieves the value of the addressee variable it can try to
find a match with a match template from the following context:

MTCONTEXT_ADDRESSEE
{
 "everyone"|"everybody" = (MSG_EVERYONE, 0);
 TEAMMATE, " and "|", "|","|" ,", MORE = (MSG_MULTIPLENAMES, 0);
 TEAMMATE = (MSG_NAME, 0);
}

This will allow the bot to figure out if multiple people were addressed with a chat
message. The chat message could for instance be “(MrElusive): everybody defend the
base”. To parse all the names out of the following chat message: “(MrElusive): Grunt
and Hunter defend the railgun”, the bot can use the above context multiple times. First
time the value of the addressee variable will match with the MSG_MULTIPLENAMES
template. Then the bot can continue with the value of the MORE variable which will
match with the MSG_NAME template.

Similarly the time can be parsed from a chat message if a specific time is specified.
Below a match template is shown that will match with for instance the chat message:
“(MrElusive): Grunt defend the base for 10 minutes”.

“(", NETNAME, “): ", ADDRESSEE, " defend ", "the "|"", KEYAREA, " for", TIME =
 (MSG_DEFENDKEYAREA, $evalint(ST_ADDRESSED|ST_TIME));

The match template uses $evalint which merges the two (bit) flags together to one value.
One of the flags is ST_TIME because a time is specified in the chat message. The bot
can now use the following context to make sense out of the specified time.

MTCONTEXT_TIME
{
 TIME, " minute"|" min","s"|"" = (MSG_MINUTES, 0);
 TIME, " second"|" sec","s"|"" = (MSG_SECONDS, 0);
 "ever" = (MSG_FOREVER, 0);
 " a long time" = (MSG_FORALONGTIME, 0);
 " a while" = (MSG_FORAWHILE, 0);
}

Using this context the bot can understand chat messages like “(MrElusive): Grunt defend
the base forever” and “(MrElusive): Grunt defend the base for a while”. In the latter case
the bot will give meaning to the expression “for a while”.

16.2 Commands

The Quake III Arena bot “understands” and reacts upon several commands. These
commands allow the bots to operate in teams and follow orders from a team leader.

Help someone

Bots can be ordered to help someone. For instance “Grunt help Hunter” or “Grunt help
me”. The bot will go to the person in need of help and will try to be of assistance.

16. Bot Commands Quake III Arena Bot 82

Accompany someone

Bots can be ordered to accompany someone. For instance “Grunt follow Hunter” or
“Grunt accompany me”. A bot ordered to follow someone will go towards the player who
needs company and will follow this player around. When the player to be followed ends
up in a fight the bot will assist in the battle.

Defend key area

Bots can also defend a key area. A player or team leader can for instance order a bot as
follows: “Grunt defend the base” or “Grunt guard the railgun”. When ordered to do so the
bot will defend the key area.

Get the enemy flag

In CTF mode bots can be ordered to capture the enemy flag. For instance “Grunt get the
enemy flag”. Grunt will then go of to the enemy base and will try to retrieve the enemy
flag.

Return our flag

When the base flag is stolen by the enemy team in CTF mode the bots can be ordered
to return the flag. For instance “Grunt return our flag”. Grunt will then go of to find the
flag of its team. The bot will try to return the flag to the base by killing the enemy carrying
it and picking up the dropped flag.

Rush to the base

In CTF mode bots can be ordered to rush back to the base. When the base is under
attack by the enemy a bot can be ordered to come back for assistance. For instance
“Grunt rush to the base”. Grunt will then run back to the base trying to eliminate any
resistance encountered.

Camp

Bots can be told to camp somewhere. For instance “Grunt camp the railgun”. Grunt will
then camp near the railgun. A player or team leader can also order a bot to camp at its
current location. For instance “Grunt camp there”. When a bot is supposed to camp at
the location of the player who orders, then “Grunt camp here” can be used.

Patrol

Bots can patrol a certain area or a specific number of key areas. A bot can be ordered to
patrol by for instance saying “Grunt patrol from the railgun to the rocket launcher to the
red armor and back”. Grunt will then walk from the railgun to the rocket launcher to the
red armor to the railgun etc. In this case the bot loops in a circle along the three items. If
the bot is supposed to go back and forth, a player can order the bot as follows: “Grunt
patrol from the railgun to the rocket launcher to the red armor and reverse. The bot will
now go from the railgun to the rocket launcher to the red armor to the rocket launcher to
the railgun etc. The bot can be ordered to patrol between any number of key areas
and/or items.

16. Bot Commands Quake III Arena Bot 83

Get item

Bots can be ordered to retrieve a specific item. For instance “Grunt get the rocket
launcher”. Grunt will then go of to get the rocket launcher.

Kill

Bots can be sent after a specific player on the enemy team. For instance: “Grunt kill
Hunter”. Grunt will then try to hunt down Hunter.

Lead the way

A bot can be told to lead someone the way towards its goal. For instance “Grunt lead
Sarge the way”. If Grunt is not anywhere near Sarge then Grunt will first go to Sarge.
From there Grunt will lead Sarge the way, and wait if Sarge cannot keep up. In case
Grunt looses sight with Sarge then Grunt will go back to find Sarge.

Dismiss

Bots can be dismissed from their currently ordered task. For instance “Grunt dismissed”.
When dismissed, the bot will decide for itself what to do.

Start team leadership

A bot can be ordered to be the team leader. For instance “Grunt you are the leader”.
Grunt will then become the team leader and will tell other human and artificial players on
its team what to do.

Stop team leadership

The team leader can also to stop being the leader and leave the job for someone else.
For instance “I stop being the team leader”. Someone else can also tell that the team
leader stops fulfilling that task. For instance “Grunt stops being the leader”. In both cases
all the bots on a team will know that the team leader resigned his job and a new team
leader can be chosen.

Join sub team

Sub teams or squads can be created within a team. Bots can be ordered to create a sub
team or squad. For instance “Grunt and Sarge create team alpha”. Both Grunt and
Sarge will then join the sub team named alpha. Bots can also be ordered to join an
existing sub team. For instance “Hunter join squad alpha”. All members of a sub team
can be ordered to do something by using the sub team name. For instance “alpha
defend the base”. All bots in team alpha will now defend the base.

Leave sub team

Bots that are in a sub team can be ordered to leave the sub team. For instance “Grunt
leave your team”. Grunt will now no longer be in any team. Bots do not have to leave
their current sub team before they can be ordered to join another team.

16. Bot Commands Quake III Arena Bot 84

Task preference

Players can report their task preference to the team leader. For instance “I would like to
be on defense” or “I want to be on offense”. A bot team leader will take these
preferences into account when assigning tasks to players.

16.3 Questions

The bots can be asked several questions in team based game modes.

Where are you?

A player can ask where a bot is. For instance “Grunt where are you?”. In case the
question is directed to a bot on the players team this bot will answer and tell its location
on the map. The bot will usually refer to a location near a specific item on the map. For
instance “I am near the railgun in the blue base”.

What are you doing?

Bots can also be asked what they are doing. For instance “Grunt what are you doing?”.
The bot will answer and tell what its intentions are.

In which team are you?

Players can ask in which (sub) team a bot is. For instance “Grunt in which team are
you?”. The bot will answer with the name of the (sub) team it is in. In case the bot is not
in a (sub) team the bot will respond accordingly.

Who is the leader?

Players can also ask who the team leader is. For instance “who is the team leader?”.
This is useful when a player joins halfway a game while others are already playing. In
case one of the bots in the game is the team leader that bot will respond and tell the
player that it is the leader. For instance “I am the team leader”.

What am I supposed to do?

A player can ask the team leader what he or she is supposed to do. For instance “what
am I supposed to do?”. In case there is a bot team leader this bot will respond and tell
the player what to do.

17. Team AI Quake III Arena Bot 85

17. Team AI

17.1 Individual team AI

The bot has limited AI to play the team based game modes in Quake III Arena. Using
this AI only, a bot does neither care much for, nor actively interact with it’s team mates.
Of course a bot will never attack nor try to hurt team mates but aside from that the bot
does not care much about the team mates when only using this individual team AI.
In regular team play the individual team AI does not provide the bot with knowledge
about special team related goals. The bot will gather items and fight enemies as it does
in deathmatch. However in the CTF team game the bot does know about special team
related goals. Such team goals are: trying to capture the enemy flag, rushing back to the
base when the bot carries the enemy flag, accompanying and protecting a team mate
who is carrying the enemy flag, defending the base and returning the base flag when
stolen. When the bot is not busy with something the bot decides for itself which goal to
achieve based on the situation in the game and sometimes randomly when multiple
goals are valid. For instance when both flags are at their base the bot can decide to try
to capture the enemy flag, or the bot can decide the defend the base. In such a case one
of the goals is chosen based on the bots personal preference. Some team goals are only
valid in certain situations. For instance the bot can only try to return the base flag when it
is stolen by the enemy. In the same line some of the base defense can be dropped when
the enemy has stolen the flag.

17.2 Team leader

To make up for the mostly lacking individual team AI there is a team leader. This team
leader has a much better overview on the game than the individual bots and human
players. This allows the team leader to initiate better interaction between team mates
than individual players usually achieve. With a single team leader, obeyed by all players,
there is also no need for conflict resolution when individual players have different ideas
about the organisation of the team, or goals that certain players should try to achieve.

The team leader can be a human or an artificial player. A bot has a special brain which
allows it to be the team leader. This extra brain of the team leader or command center
resides at the 4th layer of the structure shown in figure 5.1. The team leader orders the
team mates what to do. Aside from being the one to order others what to do the team
leader has no special role in the team. The team leader will also assign itself one of the
team goals, just like the leader orders team mates to achieve certain goals. To order
team mates to do certain things, the team leader uses chat messages that comply with
the commands bots understand as described in section 16. This gives the team leader a
wide range of commands and orders to organize the team and tell team mates which
goals to achieve. The chat messages used as orders are stored in the initial chats as
described in section 10.

17. Team AI Quake III Arena Bot 86

A bots will always try to obey the orders from a team leader. However in certain
situations the bot will ignore orders when pressing tasks have to be completed. For
instance when a bot is ordered to accompany a team mate and right after being ordered,
picks up the enemy flag. The bot will then ignore the order for the time being and first
rush back to the base to score.

In regular teamplay the team leader orders the team members to work in little groups. In
these groups one of the players takes the lead and one or more others follow. The size
of the groups depends on the total number of players on the team. These little groups go
through the level seeking for members of the enemy team in order to take them out.

In the CTF game type the team leader orders team members based on the current
situation. Four different situations are distinguished: both flags are at their base, the
enemy flag is not at it’s base, both flags are not at their bases or the team flag is not at
it’s base. When both flags are at their base a specific number of team members are
ordered to attack the enemy base and try to capture the enemy flag. The remaining team
members are ordered to defend the base. When one of the team mates manages to
steal the enemy flag the team leader will order some of the other team members to
follow the flag carrier. The other team members will go or stay on defense to make sure
the enemy gets no chance to steal the base flag. In case the enemy does steal the base
flag some of the team members are ordered to return the flag. It is usually also wise to
keep some players on defense even though the flag is not at the base. As soon as the
flag returns these team members can immediately make sure the enemy does not get a
chance to steal the flag again. When the enemy flag is at it’s base and the team flag is
stolen several team members are sent out to return the team flag and steal the enemy
flag. Also here it is often wise to keep some people on defense for when the team flag
returns.

Care has to be taken by the team leader that the team mates are not flooded with
messages and orders. Players should keep most of their attention to what is happening
directly in front of them. They cannot afford to spend a lot of time browsing through a lot
of messages from a team leader. Too much information in a message is not good as
well. A player should be able to quickly read and understand an order or message. The
team leader does not broadcast orders only applicable to specific team members. Each
team mate who needs to be ordered individually receives a personal message from the
team leader.

Enemy flag
stolen

Both flags
stolen

Both flags at
their base

Base flag
stolen

Figure 17.1: Four states of a CTF game.

18. Results Quake III Arena Bot 87

18. Implementation & tests

18.1 Implementation

The bot AI as presented in this thesis has been implemented in the C language. Several
parts of the game engine run in a virtual machine. Running these parts of the code in a
virtual machine allows them to be platform independent. The code that runs in the virtual
machines is also publicly available which allows everyone to modify the game. The
virtual machine also assures that third party developers cannot do any malicious things
from within the code that runs in it.

Part of the bot AI code also runs in the virtual machine. The 3rd and 4th layer of the AI are
very dependent on the gameplay rules. To allow third party developers to easily modify
the game these layers run in the virtual machine. The 1st and 2nd layer of the AI are far
less dependent on the game and game rules. However there is a more important reason
not to run the code for those layers in the virtual machine. The virtual machine either
interprets the code or does a last minute compile, the latter being faster. Either way
running code in the virtual machine has quite an impact on the speed. Running the code
for the 1st and 2nd layer of AI in the virtual machine would simply be too slow.

The 1st and 2nd layers of bot AI code is about 33.7 kilo lines of code (KLOC). The 3rd and
4th layer of bot AI code is about 16.1 KLOC. All the bot AI code together accounts for
about 25% of all the code in Quake III Arena that is used at run time.

The code for the game engine including the bot AI code has been ported to several
different platforms. First of all the game has mostly been developed on x86 compatible
PCs. The game has been ported to PPC and also the game platforms PS2 (Play Station
2) and the Dreamcast.

The source code for the 3rd and 4th layer of the bot AI together with the game and client
game code is publicly available on the Internet at:
ftp://ftp.idsoftware.com/idstuff/quake3/source/Q3A_TA_GameSource_127.exe

Information about editing the source files of the bot characters included with the game is
available on the Internet at:
ftp://ftp.idsoftware.com/idstuff/quake3/tools/q3abotedit.zip

18.2 Bot characters

A total of 32 different bot characters were created for Quake III Arena. There are male
and female characters and also biomechanical creatures that all have their own looks
and outfit. Each bot character has it’s own set of characteristics as described in section
8. The characters also have their own personal preferences for items and weapons in
the game. Pictures of the different bot characters can be found in appendix B.

18. Results Quake III Arena Bot 88

18.3 AAS & Maps

The 3D representation used by the Area Awareness System is pre-calculated. This pre-
calculated data is loaded before the game starts, and provides the bot with all the
necessary information about routing and navigation instantly. The following table shows
for each map in Quake III Arena the characteristics of the pre-calculated data for the
Area Awareness System. The data was compiled on an Intel 650MHz Pentium 3
Coppermine.

Map name # of areas # of areas used for
routing

of reachabilities Compile time in
seconds

Q3dm1 1714 436 1970 88
Q3dm2 1513 381 2010 82
Q3dm3 1467 519 2128 57
Q3dm4 5208 842 4085 272
Q3dm5 2106 585 2641 86
Q3dm6 2638 708 3147 125
Q3dm7 3606 1107 5263 162
Q3dm8 3263 1016 4818 211
Q3dm9 2633 699 3189 144
Q3dm10 2266 817 3658 110
Q3dm11 6150 1893 7903 502
Q3dm12 5881 1836 7634 342
Q3dm13 2686 734 3161 80
Q3dm14 4343 1456 6732 188
Q3dm15 4273 1189 5794 203
Q3dm16 2081 494 3529 68
Q3dm17 2690 544 2622 56
Q3dm18 2782 889 5106 95
Q3dm19 2057 261 1062 19
Q3tourney1 2680 540 2191 182
Q3tourney2 1787 626 2826 88
Q3tourney3 1711 572 2727 46
Q3tourney4 1924 507 2211 48
Q3ctf1 2183 663 2761 117
Q3ctf2 10317 5230 28181 948
Q3ctf3 3109 870 3978 319
Q3ctf4 3891 720 3240 62

As can be seen in the above table most maps compile within a matter of minutes. That is
typically faster than a human player can completely learn how to navigate a specific
map. Since creating the data for AAS is quite fast, and routing information can be
calculated to virtually any spot on the map, the system was in some cases used during
the development of Quake III Arena to find places on a map where players could go, but
were not supposed to go. Such places could then be sealed of to avoid players from
going there. The above table also shows that the system works with very large maps like
“Q3ctf2”. This map has over 5000 areas and over 5 times more reachabilities between
the areas. The Quake III Arena bot is able to navigate even these large maps that have
a lot of polygonal detail. However creating a BSP tree for these large maps can be
somewhat difficult. The algorithm used to create the BSP tree uses 32 bits floating point
numbers. These floating point numbers are not exact and come with round-off errors.
These errors can be troublesome with very large BSP trees or maps that have a lot of
degenerate geometry.

18. Results Quake III Arena Bot 89

18.4 AAS visualisation

In order to test the Area Awareness System visualisation code is used to visualize the
areas. An area underneath an arch is visualized in figure 18.1. In figure 18.2 a route
through areas is visualized.

Figure 18.1: area underneath arch

Visualisation code is also used to show the reachabilities between areas. Figure 18.2
shows a ‘jump’ reachability from one area on top of a pillar to another area on top of
another pillar. Figure 18.3 shows a ‘jump pad’ reachability.

Figure 18.2: jump reachability Figure 18.3: jump pad reachability

19. Conclusion Quake III Arena Bot 90

19. Conclusion

19.1 Bots

The Quake III Arena bot turned out to be a fairly good opponent. The bot is also
entertaining and quite suitable for practice and training purposes. The bot is able to
navigate through the environment in a life-like manner and the bot can pick up items and
handle weapons just like human players. The bot also shows interesting fighting
behaviour with tactical moves. The bot can chase opponents that try to escape from a
fight, and the bot itself can try to retreat if it is not feeling fit enough to fight.

The bot cannot be distinguished from a human player at first sight. However, with some
more effort the bot can usually be identified as being artificial. Human players are often
able to recognize certain patterns that are specific to a bot. On the other hand, the
evaluation of the bot, based on how hard it is to distinguish the bot from a human player,
hardly ever takes place under fair conditions. Human players almost always know in
advance if their opponents are human or artificial, based on the name of the player, or
simply because of the way the game was started.

The different bot characters can be specified in great detail. The different play styles of
the bot characters make them interesting to play with, and their individual chat
messages also make them entertaining, as the things they say are usually quite
amusing. The bots are especially versatile, because the item and weapon preferences of
each individual bot character can be specified, using the fuzzy relations as described in
section 9. The numerous characteristic variables described in section 8 also provide a lot
of room to create different bot characters.

The bot performs quite well in the team based game modes. The artificial team leader
orders other players on the team, and is able to quickly adjusts to changes in the state of
a team game. All communication takes place using text messages. The team leader has
a wide range of orders available to command team members, and organize the team.
The individual bots are able to interpret the text messages, understand the orders and
take actions accordingly. The bots in a team can ignore some of the orders if really
pressing tasks have to be completed first. A bot remembers an order and the bot will
reconsider a temporarily ignored order when the pressing task is completed.

The bot meets most of the gameplay and technical requirements that were set out for.
The performance is quite good, and the CPU and memory usage is within acceptable
limits. In some rather large maps the routing calculations for the bots can slow down the
game simulation somewhat. However these few slowdowns are not significant enough to
seriously degrade the gameplay experience.

19. Conclusion Quake III Arena Bot 91

19.2 AAS

It has been shown that all the information a bot needs in order to navigate and find
routes through an arbitrary polygonal environment can be (pre) calculated in a relatively
short time, without the need for human intervention. In effect a bot can ‘learn’ its way
around the game world in a very short period of time. This is an advantage over the
commonly used waypoint systems. These systems are usually harder to create with
programming, and often require human intervention in order to optimize them.

Spatial subdivisions

For the Area Awareness System a BSP tree is used to create a spatial subdivision of the
game world. Since deciding whether a polyhedron is tetrahedralizable is NP-complete
[15], it seems plausible that finding optimal general spatial subdivisions may be as hard
or harder. For AAS a heuristic is used to choose split planes at the nodes of the BSP
tree. This heuristic optimizes for the least number of splits and a balanced tree. Using
such an heuristic, the most one can practically hope for is good subdivisions that exhibit
subquadratic size and near-logarithmic depth for practically occurring environments.
Although the spatial subdivisions created for the Quake III Arena maps were not optimal,
the total number of convex sub spaces was never too large to handle. The number of
areas seems to always stay within practical limits, especially since a lot of convex sub-
spaces can be merged, after binary space partitioning is used to create them. Creating a
spatial subdivision for huge maps or maps with a lot of degenerate geometry can be
troublesome. Due to floating point round off errors the BSP tree created for AAS can
sometimes be inaccurate, which might eventually lead to navigation problems for the
bot. To avoid these problems the game world could first be subdivided into chunks using
a grid. A BSP tree is then created for each chunk, which is significantly smaller and less
complex than a BSP tree for the whole game world. The smaller BSP trees created for
the separate chunks will likely be less sensitive to floating point round off errors. The
BSP trees for all the chunks can then be combined into one BSP tree.

19.3 Future directions

Although the Quake III Arena bot turned out to be a fairly good artificial player there is
room for improvements in several areas.

Fighting

The fighting behaviour of the bot could be improved by adding more and better
anticipation of enemies. While aiming, the bot could for instance predict which item(s) an
opponent is going for. The bot could then shoot missiles at locations along the predicted
path of the enemy. Currently, when the enemy is out of sight, the bot always assumes
the enemy will come back towards the bot, traveling along the shortest path. However,
the enemy does not necessarily have to move back towards the bot. The enemy might
for instance want to pick up some item and navigate towards it. Here, the bot could also
use better prediction of where the enemy is going. To setup an ambush, the bot would
also need to anticipate the movement of the enemy. Where the enemy is going, could be
predicted, and an ambush could be setup accordingly. The bot would also want to know
from which direction the enemy is likely to approach, in order to face that direction, and
have a weapon ready to fire upon sighting the enemy.

19. Conclusion Quake III Arena Bot 92

To find good locations to ambush an enemy, the bot has to analyze the environment.
Certain properties can make a specific location a good position to setup an ambush. The
specific properties will have to be identified first before the bot can search for such
strategic locations. In the same way the bot could analyze the environment to find other
locations, suitable for specific purposes. The bot could search for locations that are best
suitable to camp, to defend certain areas, to provide suppressing fire in teamplay or
locations that have some other strategic importance.

Planning

In general the bot almost only uses stimulus response behaviour. The bot uses little or
no planning to achieve specific goals within the game. Some planning is used when a
bot tries to solve a puzzle as described in section 14. Using a goal stack the bot builds
up a list of sub-goals, in order to reach the final destination. Most of the time however,
the bot only has a single goal. The bot might use sub-goals on the way to achieving its
current long term goal, for instance when a nearby item is found that can easily be
picked up. However these sub-goals are not planned for, and are only used when
encountered. The bot will likely show more intelligent behaviour when it has the ability to
construct larger plans. The bot could for instance create a plan to first retrieve specific
items before it starts defending a key area.

Team AI

The teamplay behaviour of the bot could be improved upon as well. The bot could be
made more aware of certain team goals and tuned for better cooperation with team
mates. The chat message parsing could also be improved for the communication with
team mates or the team leader. Currently only match templates are used by the bot to
‘understand’ messages. It is probably worthwhile to use a key based method as used for
the Eliza-like reply chats. The reply chats do not only allow the usage of match
templates, but also keys to make sure certain words do not occur in the chat message.
This might be useful to guarantee certain words do not occur in the variable strings in a
match template.
The AI of the team leader could also be improved upon. It is probably useful to create a
hierarchy of sub-teams within a team. Each sub-team at a lower level in the hierarchy
has it’s own lower ranked team leader, much like there are officers, sergeants and
corporals in the army. A team leader on a higher level would then order team leaders on
a lower level in the hierarchy. Orders will propagate down the hierarchy until individual
team members are ordered to complete certain tasks. Such an hierarchy allows a better
organisation of a team, and complex tasks to be accomplished more easily. A complex
task could be solving a puzzle as described in section 14. A team leader could order
other players, or lower ranked team leaders, to activate certain buttons or triggers.
Working in a team like this, could significantly reduce the time required to solve the
puzzle.

20. References Quake III Arena Bot 93

20. References

20.1 Books and articles

1. Larry J. Crocket, The Turing Test and The Frame Problem, (1994), Ablex
Publishing Corp., Norwood, New Jersey.
ISBN: 0-89391-926-8

2. C.H. Chen, The Fuzzy Logic and Neural Network handbook.

ISBN: 0-07-011189-8

3. Stuart C. Shapiro, Encyclopedia of Artificial Intelligence, (January 1992),

ISBN: 047150307X

4. Barr and Feigenbaum, The Handbook of Artificial Intelligence, vol. 1, (June

1986), Addison-Wesley Pub Co.
ISBN: 0201168901

5. Nils J. Nilsson, Principles of Artificial Intelligence, (June 1986)

Morgan Kaufmann Publishers
ISBN: 0934613109

6. Stuart Russel, Peter Norvig, Artificial Intelligence, a modern approach (1995)

Prentice-Hall
ISBN: 0131038052

7. L. Boullart, A.Krijgsman and R.A. Vingerhoeds, Application of artificial

intelligence in process control. (1992) Pergamon Press
ISBN: 0080420176

8. John David Funge, AI for Games and Animation. (1999), A K Peters, Ltd.

ISBN: 1568811039

9. William van der Sterren, Terrain Analysis for 3D Action Games, in Proceedings of

the 2001 Game Developer Conference, (2001),
http://www.cgf-ai.com/docs/gdc2001_paper.pdf

10. John E. Laird, It knows what you’re going to do: Adding anticipation to a

QuakeBot, (1999), University of Michigan.
http://ai.eecs.umich.edu/people/laird/papers/aticipation-print.pdf

11. Thomas H. Cormen, Introduction to Algorithms, (2000 24th printing),

ISBN: 0-262-53091-0

20. References Quake III Arena Bot 94

12. Donald Hearn, M. Pauline Baker, Computer Graphics, (2nd edition 1996),
Prentice-Hall
ISBN: 013159690X

13. Andrew S. Tanenbaum, Computer Networks. (3rd edition 1996), Prentice-Hall

ISBN: 0133942481

14. H. Fuchs, Z. Kedem, B. and Naylor, Visible Surface Generation by A-Priori Tree
Structures. (July 1980),
Conf. Proc. of SIGGRAPH '80, 14(3), 124-133.

15. Jim Ruppert and Raimund Seidel, On the difficulty of tetrahedralizing 3-

dimensional non-convex polyhedra. (1989), In Proc. 5th Annual ACM symposium
on Computational Geometry, pages 380-392.

20.2 Websites

16. Allan Turing Home Page
http://www.turing.org.uk/turing/

17. Fuzzy Logic Laboratorium Linz – Hagenberg

http://www.flll.uni-linz.ac.at

18. Eliza chat program.
http://www.toptown.com/hp/sjlaven/eliza.htm

19. Gamasutra AI index

http://www.gamasutra.com/features/index_ai.htm

20. Binary Space Partitioning page
http://www.cs.buffalo.edu/~whitley/research/graphics/bsp/tutorial.html

21. BSP Faq

http://www.upl.cs.wisc.edu/sigs/gamesig/library/graphics/bsp-faq.html
http://www.dcc.ufba.br/mat056/bsp/bsp.html

22. Dan’s programming tutorials BSP

http://members.home.com/droyer/tutorials/Engine03.html

23. BSP Tutorial by Steven Cento
http://www.grandus.com/info/BSPTrees/BinarySpacePartitioningTrees.html

24. Algorithms archive

http://wannabe.guru.org/alg/

25. CTF Communication strategies
http://www.captured.com/articles/comm/

20. References Quake III Arena Bot 95

26. Computer Generated Forces by William van der Sterren

http://www.botepidemic.com/aid/cgf/
http://www.cgf-ai.com

27. Bot Epidemic (excellent site with FPS bot related news and info)

http://www.botepidemic.com

28. Artificial Intelligence by Criss Eliasmith

http://artsci.wustl.edu/~philos/MindDict/artificialintelligence.html

29. John Laird’s Artificial Intelligence & Computer Games Research

http://ai.eecs.umich.edu/people/laird/gamesresearch.html

30. Soar bot for Quake2
http://ai.eecs.umich.edu/~soarbot/

31. Amit’s Game programming information.
http://www-cs-students.stanford.edu/~amitp/gameprog.html

32. PC AI magazine

www.pcai.com/pcai

20.3 Previous work

33. Omicron bot for Quake
http://www.botepidemic.com/gladiator/obots/obots.html

34. Gladiator bot for Quake II

http://www.botepidemic.com/gladiator

Appendix Quake III Arena Bot 96

Appendix

Appendix Quake III Arena Bot 97

A. Quake III Arena

A.1 Getting about

Walking
The player can use the 'forward', 'backward', 'move left' and 'move right' keys to move in
the specified direction. Turning left or right is done with the 'left' or 'right' keys or by
sliding the mouse to the left or right.

Jumping & crouching
The player can tap the 'jump' key to jump. The player jumps further if also moving
forward. The player can hold down the ‘crouch’ key to move around in a crouched
position.

Swimming
When underwater, the player can “aim” in the direction he/she wishes to go, and move
forward. The player has full 3D freedom. The 'jump' key is used to move straight up
towards the surface. Once on the surface, the player can tread water by holding down
the 'jump' key.

Shooting
The player can tap the 'shoot' key to fire the weapon currently held. The player can hold
it down to keep firing.

Using objects
There's no special key to use objects in the environment. The player can push a button
or open a door, by walking up to it. To ride a platform, the player can step on top of it. If
a door won't open or a platform won't lower, the player might need to do something
special to activate it.

Picking up stuff
To pick up items, weapons and powerups, the player has to walk over them. When an
item isn't picked up this means the player already has the maximum amount possible of
it or the item is inferior to what the player already has.

Appendix Quake III Arena Bot 98

A.3 Environmental hazards
Slime

Hurts the player instantly and keeps on hurting. The
player should stay out of slime unless the player
has a battle suit.

Lava

The player should keep out of lava because it’s very
deadly. However the battle suit will also protect the
player from lava.

Water

A player can wade through water if it isn’t very
deep. Deeper waters the player can swim through.
The player has to come up for air periodically to
avoid drowning.

Death pit

These endless pits are usually filled with fog and the
bottom cannot be seen. When falling into a death pit
the player is assured of a sudden death.

Shooter

There are several different shooters. In the picture a
grenade launcher is placed at a wall. When
triggered this shooter throws grenades into the
room

Appendix Quake III Arena Bot 99

A.4 Structural systems

Door

Most doors open when approached. However some
doors need to be opened with a button or some
other trigger.

Teleporter

Teleporters instantly transport a player to another
location on the map.

Portal

A different location on the map can be seen through
a portal. Often these portal also teleport the player
to that location on the map when entered.

Jump pad

Jump pads push the player up to higher levels in a
map.

Acceleration pad

These pads can push the player over long distances
in a map.

Appendix Quake III Arena Bot 100

Bobbing platform

Some maps have bobbing platforms. A player can
jump onto these platforms and ride them to higher
levels in the map.

Button

Touching them activates buttons. A button is used
to open doors and grates, which lead to other areas
of the map.

Pendulum

Pendulums swing from side to side. Players die
when hit by a pendulum so care has to be taken
when trying to pass them.

A.5 Weapons

Gauntlet

The gauntlet is an over sized metallic glove with a spinning blade. The
weapon does not require any ammunition. A player will have to get up
real close to an enemy to inflict damage. However a successful hit
inflicts 50 points of damage.

Machine gun

The machine gun is the most effective default weapon. This instant hit
weapon inflicts between 5 and 7 points of damage per bullet. The rate
of fire is quite high. The machine gun is pretty accurate but at large
distance quite a few bullets will miss their target. The default amount of
ammunition for this weapon is 100. The player can pick up and carry
around up to 200 bullets of ammunition.

Appendix Quake III Arena Bot 101

Shotgun

The double-barreled shotgun is a very lethal weapon at close range.
Though the weapon appears double-barreled it only uses one shell of
ammunition per discharge with a spread of 11 pellets. Each pellet
inflicts approximately 10 points of damage. The pellets disperse in a
spread pattern, which makes the weapon less effective at a larger
range. When a player acquires the weapon it has 10 rounds of
ammunition. The player can pick up and carry around up to 200
rounds of ammunition.

Plasma gun

The plasma gun shoots hot blobs of plasma at a pretty high rate. A
burst of hot plasma will be quite difficult to avoid for an enemy. Each
plasma blob inflicts approximately 20 points of damage. The impact of
a blob near an enemy can also inflict splash damage. However the
radius of the splash damage is tight. When a player acquires the
weapon it has 50 cells of ammunition. The player can pick up and
carry around up to 200 cells.

Grenade Launcher

The grenade launcher fires grenades that bounce around for about
three seconds before they explode. The grenade explodes
immediately upon striking a player. Littering the floor with grenades on
a retreat can be very helpful when trying to shake an enemy of your
tail. Each grenade can inflict up to 100 points of damage. The
grenades also inflict splash damage when the enemy is within range.
When a player acquires the grenade launcher it has 10 rounds of
ammunition. The player can pick up and carry around up to 200
grenades.

Rocket Launcher

The rocket launcher is one of the most lethal weapons in the game. It
fires rockets that inflict around 100 points of damage on impact. When
the rocket explodes near a player it will still inflict splash damage.
When a player acquires the rocket launcher it has 10 rounds of
ammunition. The player can pick up and carry around up to 200
rockets.

Appendix Quake III Arena Bot 102

 Lighting gun

The lightning gun shoots a beam of lightning that inflicts about 80
points of damage for each second a player is hit by the beam.
Enemies are ensured of a certain death when the beam is held onto
them for several seconds. The beam is limited in range so enemies
that are far away can get away unharmed. When a player acquires the
lightning gun it has 60 rounds of ammunition. The player can pick up
and carry around up to 200.

Railgun

The railgun is the most powerful instant hit weapon. A slug that inflicts
100 points of damage on a direct hit is ejected at an extremely high
speed. However the rate of fire is rather low. The railgun is very
accurate even over large distances. When a player acquires the
railgun it has 10 rounds of ammunition. The player can pick up and
carry around up to 200 slugs.

BFG10K

The BFG10K fires green blobs at high speed that inflict 100 points of
damage on impact. The impact of the blob also causes splash damage
to nearby enemies. The rate of fire is relatively high. Higher than for
instance with the rocket launcher. The BFG10K is only found in very
few maps and is often hard to acquire. In return the player gets one of
the most powerful weapons in the game. When a player acquires the
BFG10K it has 20 rounds of ammunition. The player can pick up and
carry around up to 200 rounds of ammunition.

Appendix Quake III Arena Bot 103

A.6 Items & Powerups

Items and power-ups that can be picked up are spread throughout the environments in
the game.

Items

5 health
The player can pick up as many of these health items as can be found.
Each green health will add 5 to the player’s health.

10 health
The yellow health increases the player’s health with 10. This item
cannot be picked up when the player has 100 or more health.

25 health
This item adds 25 to the player’s heath. Also this item can only be
picked up when the player’s health is below 100.

Armor shard
When picked up the armor shard increases the player’s armor by 5.
Armor can be picked up while the player has less than 200. All armor
above 100 slowly drains away.

Yellow armor
The yellow armor adds 50 to the player’s total armor.

Red armor
Picking up a red armor adds 100 to the player’s total armor.

Powerups

Mega health
This powerup gives the player 100 points of additional health. After a
few seconds all health the player has above 100 will slowly drain
away.

Appendix Quake III Arena Bot 104

Battle Suit
Wearing this powerup the player is only affected by direct projectile
hits. All direct hits will also only apply half the damage. The player can
also stay underwater while using this powerup

Quad damage
A player wearing this powerup delivers four times the normal damage
with weapons.

Haste
When picked up the player can run and shoot 1.3 times faster for half
a minute.

Flight
With this powerup the player can fly around the level for a minute.

Invisibility
When picked up renders the player almost invisible.

Holdable items

Holdable items are not used immediately when picked up. The player has to press a
special use key to use the item. A player can only carry one holdable item at any time.

Med kit
Using this powerup will fill your health back up to a hundred. The
powerup cannot be used when you have 100 or more health.

Personal Teleporter
When this powerup is used the player teleports to a random spawn
location in a map. This powerup is ideal to teleport out of a battle if you
aren’t dong all that well.

Appendix Quake III Arena Bot 105

A.7 Deathmatch

In deathmatch mode the goal is to kill the other players in the game. Everyone is on
his/her own. This game mode is also referred to as Free For All (FFA). The score of a
player is increased for every kill. These kills are often called frags. When a player
suicides the frag count for that player is decreased. It is possible to set a time and frag
limit. When one of these limits is reached the game stops. The winner is the one with the
highest frag count.

A.8 Teamplay

In teamplay mode almost everything is the same as in deathmatch mode except there
are two teams with players. There is a red and a blue team. A player joins either the red
or blue team when entering the game. A player tries to kill all members of the other
team. The winning team is the one with the highest accumulated frag count of all players
on that team. In teamplay mode it is also possible for a player to send messages to only
the members of the player's own team.

A.9 Capture the Flag

In the Capture The Flag game mode (CTF) there is also a red and a blue team with
players. There is a blue and a red flag in the game, one positioned in a blue and one in a
red base respectively. The red team tries to infiltrate the blue base, capture the blue flag
and bring it back to their red flag in their base. The blue team tries to capture the red flag
and bring it back to their blue flag in their base. A team scores a point when they capture
the enemy flag and bring it back to their base. However their own flag also has to be
there. A team cannot score when their own flag is not at its base. While trying to capture
the enemy flag and trying to prevent the enemy from capturing their own flag, players
can fight with each other as in a regular teamplay game. When a player carrying a flag is
killed the flag is dropped at the position where the player died. Another player can pick
up the flag from there. If the flag of the player’s team is picked up it returns immediately
to the base and the player will not carry the flag around. When a flag is dropped and not
picked up within a certain amount of time the flag will also automatically return to its
base.

Appendix Quake III Arena Bot 106

B. Bots

Anarki Angel Biker Bitterman

Bones Cadavre Crash Daemia

Doom Gorre Grunt Hossman

Hunter Keel Klesk Lucy

Major Mynx Orbb Phobos

Appendix Quake III Arena Bot 107

Patriot Ranger Razor Sarge

Slash Sorlag Stripe Tankjr

Uriel Visor Wrack Xaero

Appendix Quake III Arena Bot 108

C. Terms and abbreviations

3D – Three dimensional.
AAS – Area Awareness System, system that provides the bot with game world state info.
AI – Artificial Intelligence.
bot – Abbreviation for robot.
brush – Convex building block used to build maps in Quake III Arena.
BSP – Binary Space Partitioning.
CPU – Central Processing Unit.
CSG – Constructive Solid Geometry.
CTF – Capture The Flag, one of the teamplay game types in Quake III Arena.
FFA – Free For All, deathmatch game type.
FPS – First Person Shoot-em up.
FSM – Finite State Machine.
GA – Genetic Algorithm
NN – Neural Network

